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In this thesis, I introduce novel concentration-of-measure bounds for the supremum deviation, several
variance concepts, and a family of game-theoretic welfare functions. It is divided into three parts, the first
focusing on statistical methods and machine learning, followed by fair machine learning, and concluding with
dependent statistical estimation tasks. In particular, I introduce empirically centralized Rademacher averages
to probabilistically bound the deviations between the empirical and true means over a family of functions,
with applications to multiple comparisons problems in statistical and scientific settings (smaller p-values and
tighter confidence intervals), and to various supervised and unsupervised machine learning settings (reduced
sample complexity and sharper generalization bounds). I then show applications of these bounds to various
machine-learning, fair machine-learning, and data-science settings, with deep theoretical implications and
impactful practical consequences. Parts I and II assume an independently and identically distributed (i.i.d.)
setting, where we observe many statistically independent occurrences before drawing conclusions, but in
closing, Part III extends some of my methods and themes to study non-i.i.d. mean-estimation problems.
Naturally, some conclusions are weaker in these relaxed settings, but I find that many of the same data-
dependent and variance-sensitivity themes apply, and give practical algorithms for realistic problems where
the i.i.d. assumption is prohibitive.

Special care is taken throughout to connect complicated bounds and ideas to simple and intuitive concepts
(e.g., relating tail bounds to central limit theorems, or advanced learning models to linear regression), while
explaining and rigorously justifying all finite-sample probabilistic guarantees, as well as assumptions and
proof techniques. Consequently, at the heart of this thesis is the marriage of simple ideas about intuitive
random processes to sophisticated techniques and bounds from the theory of concentration of measure and
probabilistic methods, applied in complicated settings to a variety of learning and statistical estimation
problems. Topics are chosen both for their theoretical relevance and how well they illustrate or connect such
ideas, as well as for their practical relevance and applicability to high-impact real-world problems.

Part I: Concentration of Measure and Uniform Convergence in Machine Learning The first
part deals primarily with statistical estimation guarantees in standard machine-learning settings. Chapter 1
introduces the empirically centralized Rademacher average, which yields probabilistic data-dependent bounds
on the supremum deviation (SD) of empirical means of functions in a family F from their expectations
(i.e., supf∈F

∣∣Ê[f ]− E[f ]
∣∣, the largest absolute difference between empirical means and expectations), with

optimal dependence on the supremum variance and the function ranges. Such bounds are impactful in
machine learning, as they bound the generalization gap between training and test error, and thus control
overfitting and quantify the bias-complexity tradeoff.1 More generally, such uniform convergence bounds have
applications to multiple comparisons problems in statistical and scientific settings (smaller p-values and tighter
confidence intervals), and to various supervised and unsupervised machine learning settings (reduced sample
complexity and sharper generalization bounds). Empirical centralization yields data-dependent supremum
deviation bounds that improve the dependence of non-centralized (standard) Rademacher averages on raw
variances to centralized variances, thus matching (asymptotically) known lower-bounds for mean estimation.
To compute the bounds in practice, I develop novel tightly-concentrated Monte-Carlo estimators for the
empirical Rademacher average of the empirically-centralized family, and show novel concentration results for
the empirical supremum variance. My experimental evaluation shows that these bounds greatly outperform
their non-centralized counterparts, and are extremely practical, even at small sample sizes.

A major issue, ubiquitous in supervised learning settings, is the cost of obtaining labeled training data.
The methods of Chapter 1 may be viewed as a mechanism to get more out of limited labeled data, e.g., by
showing that far less of it is required than previously thought, but Chapter 2 takes a complimentary and

1I.e., the tension at the heart of machine learning between better fit and increased selection bias as model complexity increases.
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orthogonal approach. In Chapter 2, I adopt a transductive learning setting, wherein we have a vast set
of points, a tiny fraction of which are labeled, and wish to learn to predict the remaining labels. I then
describe a transductive learning algorithm that uses these data, alongside additional knowledge in the form
of weak labelers, which are arbitrarily inaccurate predictors for either the target task or some related task. In
particular, I show that accurate learning is possible with a small labeled training set when (a subset of) the
family of weak labelers is somewhat well-aligned with the target task. The strategy here is to estimate and
(probabilistically) bound appropriately-chosen statistics of the weak labelers using the supervised data, and
then consider a feasible set of possible labelings for the unlabeled data that respect these statistics. When
sufficient labeled data are available to well-estimate the chosen family of statistics, and the feasible label
space is of low diameter, learning the minimax-optimal classifier over this feasible set then yields strong
generalization guarantees. In particular, if the weak-labeler statistics give sufficient information about the
target task, and we have sufficient labeled data to accurately constrain their statistics, then all feasible
labelings are reasonably accurate, and if sufficiently many unlabeled data are available, then we can learn
a complicated model; these conditions neatly factor the labeled and unlabeled sample complexities, and
describe conditions under which weak-labelers are sufficient to supplement a small labeled training set.

Part II: Fairness with Aggregator Functions: Malfare, Welfare, and Fair-PAC Learning Chap-
ter 3 begins with an axiomatic justification to the power mean family2 of social welfare functions, which
summarize societal wellbeing, while making tradeoffs between the needs of the overall population and of
marginalized groups (c.f., utilitarianism vs egalitarianism). From the same axiomatization, starting with a
measure of discontentment (loss) rather than contentment (utility), I derive the parallel concept of malfare.
For linear welfare functions, malfare acts as the negative welfare of the negative utility, but malfare extends
also to nonlinear welfare functions (e.g., the egalitarian welfare, or the geometric mean utility) that are
undefined for negative utilities. This is crucial to fairness, as we require nonlinear power-mean malfare
functions to specify fairness tradeoffs. These arguments are strongly grounded in the economic theory of
cardinal welfare, but from them I show statistical estimation and learning guarantees more characteristic of
the computer science literature. In particular, malfare is a natural target in machine learning problems where
we minimize (negatively connoted) loss, rather than maximize (positively connoted) utility.

As an application, in Chapter 4, I cast a streaming-media codec-selection problem as a fairness-sensitive
learning problem, wherein we seek to efficiently select a small set of media-encoders that can mutually satisfy
a user-base with diverse preferences (e.g., quality vs bandwidth consumption). Optimizing welfare objectives
lead to diverse codec choice, whereas without considering fairness and welfare objectives, it is easy to optimize
only for a target demographic, or under invalid assumptions on users, making streaming inaccessible and
inflexible. Fair codec selection an important accessibility issue, as these types of considerations ensure that
audiovisual streaming and telecommunications services effectively serve populations that are often sidelined
by digital services, including those with limited internet access, as well as those with various audiovisual
perception conditions. I explore various welfare and Pareto optimality concepts, and how the bias-complexity
tradeoff manifests in multivariate settings and with fairness issues.

From a more theoretical angle, in Chapter 5, I show statistical estimation guarantees for welfare and
malfare, and from the social planning problem, develop a theory of fair machine learning, based on the
probably approximately correct (PAC) learning framework, termed fair-PAC learning. A fair-PAC learner
is an algorithm that learns an ε-δ malfare-optimal model with bounded sample complexity, for any data
distribution, and for any (axiomatically justified) malfare concept. We show broad conditions under which,
with appropriate modifications, many standard PAC-learners may be converted to fair-PAC learners. This
places fair-PAC learning on firm theoretical ground, as it yields statistical, and in some cases computational,
efficiency guarantees for many well-studied machine-learning models. Fair-PAC learning is also practically
relevant, as it democratizes fair machine learning, by providing concrete training algorithms and rigorous
generalization guarantees for these models.

Part III: Sample-Efficient Mean-Estimation with Dependent Sequential Data Finally, Part III
extends the methods and themes of Parts I and II, wherein I assume i.i.d. data samples, into more general
weakly dependent non-i.i.d. settings. As with the data-dependent guarantees using empirically centralized

2Given g groups, sentiment vector S ∈ Rg0+, and probability measure w ∈ Rg0+, the p-power mean for p ≥ 0 is defined as
Mp(S;w)

.
= limρ→p

ρ
√∑g

i=1wiS
ρ
i . Special cases include p = 1, where it reduces to the weighted arithmetic mean (ubiquitous in

risk-minimization) and p =∞ for w � 0, where it reduces to the maximum (standard in robust or minimax learning).
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Rademacher averages, the goal here is to get the strongest guarantees under the weakest assumptions; in
particular, this means my algorithms must be sensitive to structure found in the data. While notions of
approximate independence can be difficult to rigorously bound from data, I find that appropriate variance
concepts are easy to bound, and are sufficient to obtain asymptotically near-optimal sample-complexity
guarantees for mean estimation in two dependent settings. In particular, I first examine block databases,
where the key assumption is that contiguous blocks of records can be accessed nearly as efficiently as individual
records, and second, I examine ergodic Markov chains, where each step of the chain is a memoryless random
variable (i.e., conditionally independent from its history given the previous step), and it is as easy to collect a
trace of dependent (often correlated) samples as it is to collect a pair of near-independent samples.

In both cases, I give data-dependent algorithms for ε-δ mean-estimation that avoid worst-case sample-
complexity behavior. In particular, by averaging not just (approximately) independent samples,3 but instead
all of the dependent samples (available at no extra cost), I find that often the variance of the mean estimate
decreases; particularly so when the data are less dependent than indicated by a priori structural assumptions.
This decrease in variance implies more rapid convergence of the empirical mean by various central limit
theorems, though this work undertakes the significantly more challenging endeavor of showing commensurate
improvement to finite-sample convergence rates. Furthermore, as I do not assume a priori knowledge of the
appropriate variance concepts, sufficient sample sizes are not known a priori, and thus I employ a progressive
sampling strategy to avoid drawing too many samples. The details of variance-estimation and necessary
multiple-comparisons corrections entailed are subtle, but intuitively, this acts as a “guess and check” method,
wherein we optimistically select an initial small sample size, which we use to estimate variances and means,
and we iteratively increase it until a sufficiently large sample has been drawn so as to provide the desired
guarantee. Surprisingly, despite being variance-oblivious, these strategies are asymptotically optimal, up to
log-log factors, in both the block-database and Markov-chain settings. In both cases, a priori guarantees on
the amount of dependence do appear in our bounds, but only transiently, and as the additive error is taken
to 0, terms involving only variance, which is estimated entirely from the data, come to dominate. This calls
into question the importance of difficult-to-bound quantities measuring the degree of dependence.

This Work, as a Whole Read separately, each part represents a significant advancement in its respective
field; the first in statistical learning theory, with an emphasis on algorithms and generalization guarantees
requiring less labeled data than previous methods; the second in the axiomatic philosophy, practice, and
statistical learning guarantees of fair machine learning ; and the third in showing that themes and bounds
from sampling problems in standard i.i.d. settings translate well into non-i.i.d. settings. Special attention is
paid to keep each part readable outside of the greater context of this work, however the reader will better
appreciate thematic connections, applications, and technical synergy when they are considered as a whole.

To make this concrete, I note that the methods of Part I and Part III are not mutually incompatible,
opening the door to strong uniform convergence bounds in non-i.i.d. settings, and furthermore, the fair
learning setting of Part II obviously benefits from the statistical bounds of Part I, but similar analysis is
certainly possible in non-i.i.d. settings. Indeed, in a connected and interdependent world, it may be the case
that practical fair systems need to consider the intricacies of non-i.i.d. learning, and ultimately the importance
of philosophically grounded and statistically rigorous fair-learning systems, operating on real-world data
with all the messy dependence structures that may entail, just may be exactly what is needed, not only to
bring new deep and interesting problems to the computer science community, but also to solve problems of
algorithmic and natural injustice and unfairness in the world at large.

In Conclusion Part I introduces new statistical techniques for variance-sensitive uniform convergence
bounds and generalization guarantees in machine learning. The centralization strategy of Chapter 1 achieves
asymptotically-optimal bound convergence rates, and the Monte-Carlo estimation procedure yields sharp
bounds with both centralized and non-centralized (standard) empirical Rademacher averages. This has broad
implications in machine learning, data science, and statistical settings, and can also be used as a component
statistical method, mutatis mutandis, in all subsequent chapters. Chapter 2 then continues this theme of
efficient use of data by introducing an algorithm that augments a small amount of labeled data with the
output of weak labelers, which are assumed to be machine learning models associated with correlated tasks.
I show both computational guarantees on efficient learnability and statistical guarantees on generalization

3In particular, samples drawn from independently sampled blocks in the database setting, or samples with a “sufficiently
large” number of steps between them (where “sufficiently large” depends on chain-specific analysis) in the Markov chain setting.
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bounds involving both the number of labeled and unlabeled samples.
Overall, the work of Part I may be interpreted as novel methods to reduce the burden of acquiring large

amounts of labeled data to train sophisticated machine learning models. Indeed, with the ever-expanding
available computational power available (e.g., as characterized by Moore’s law, and more recently with learning
on GPUs, FPGAs, and specialized hardware) we have trained more complicated models (in particular, deeper
neural networks), but datasets have had to grow commensurately to support training such models without
overfitting. However, as computation becomes cheaper, the economic costs of collecting larger datasets do
not always scale similarly, leaving learning from small datasets a problem that is both practically important
and theoretically challenging. In fact, this setting is particularly impactful, as poor performance and analysis
in the small sample setting can be a fairness issue, in the sense that by nature of their size and visibility,
more data may be available on majority groups than minority or understudied groups, which contributes to
marginalized groups being often poorly-served by machine learning systems.

Following the pure statistical methods of Part I, in Part II, I define malfare parallel to welfare, and show
that subject to several intuitive and basic axioms of cardinal welfare, all welfare and malfare functions are power
means. I then argue that fair machine learning methods should seek to minimize malfare, as this naturally
generalizes loss minimization to multiple groups. I next combine in Chapter 4 the uniform convergence
guarantees of Part I with the fairness setting of Part II, by introducing the fair codec selection problem and
providing an algorithm to solve it. Finally, in Chapter 5, I define a concept of fair-PAC-learnability in terms
of malfare minimization, and characterize both necessary and sufficient conditions for various flavors of fair
learnability. Following Valiant’s introduction of classical PAC-learning in order to rigorously characterize
machine learning problems in the lexicon of computer science, I define malfare minimization as the target
of fair-PAC learning, with axiomatically justified fairness characteristics, the precise details of which also
lead to interesting theoretical computer science and statistical estimation questions. In particular, I show
a hierarchy of PAC-learning and fair-PAC-learning settings, and am excited to see additional connections
drawn in future work.

Finally, in Part III, I leave the i.i.d. setting behind, with two dependent mean-estimation settings of great
practical and theoretical interest. Chapter 6 describes a common real-world problem in databases, where a
user wants to estimate the mean of a function, without waiting for the database to iterate over all records.
Motivated by the real-world performance characteristics of modern database systems, I show that, while in
the worst case, sampling entire blocks may not improve over sampling individual records, my algorithm is
able to detect independence within blocks automatically, and adapts accordingly. Chapter 7 adapts this
idea of algorithmically adapting to independence detected within the data, and applies it to sample from
Markov chains. Such settings are both of great interest to the theoretical computer science community, as
increasingly attention is placed on randomized algorithms, and also to practitioners in diverse fields, from
significance testing in the sciences to machine learning and artificial intelligence, wherein such methods are
vital to efficiently reason under partial knowledge in an uncertain world.

The central theme running through all of my work is the importance placed on rigorous guarantees
for domain-appropriate properties in various probabilistic processes, most notably in machine learning
(generalization bounds), sampling (mean estimation guarantees), and data science (frequent itemsets, equilibria
in empirical game theory, etc.). In particular, almost all of my publications rigorously show finite-sample
probabilistic guarantees, and overall my work illustrates that while such guarantees may induce significant
proof complexity, often they asymptotically match or nearly match known lower bounds for sample complexity
and approximate central-limit-theorem bounds. I argue that this additional analytical overhead is a price
worth paying, as finite-sample guarantees are a necessary component in understanding the behavior and
failure modes of machine learning and data science systems. As we see machine learning increasingly employed
in our day-to-day lives, and witness the catastrophic consequences of failures of such systems, the importance
of rigorous analysis of these methods to avoid negative outcomes becomes increasingly apparent.

In particular, while issues like sample complexity, generalization bounds, and non-i.i.d. estimation guar-
antees may seem less important to a broader audience than the social good implications of fair machine
learning problems, this thesis presents the argument that it is exactly this sort of analytical approach that
will allow us confidently learn from data. Indeed, by rigorously characterizing fair learnability and studying
its limitations, we may not only avoid the biased mistakes and harmful outcomes that plague current machine
learning systems, but also better understand, and perhaps avoid, the problems of the future.


