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Here I present a loosely technical overview of the most significant mathematical ideas in my work, as
summarized by three simple inequalities, alongside their broad implications and context. Such a concise
presentation is necessarily reductionist, and similarities are emphasized over differences, but the overall
character of the work shines through. Crucial context for these inequalities is that each involves a novel
or previously underappreciated or overlooked statistically stable (easily estimated) quantity, which relates
to some well-understood critical measure of the error of a sampling process. For simplicity, I present only
expectation bounds, but each inequality can be converted to a similar high-probability bound.

A key theme in my work is removing unrealistic or limiting assumptions of a priori knowledge on various
random processes, showing whenever possible that sample-estimates of key quantities suffice. In particular,
via highly precise and technical concentration of measure analysis, I show that the relevant quantities in each
of the three inequalities can be estimated from the available data, with modest constant-factor cost, and
little or no surplus asymptotic cost. Much of the technical challenge thus revolves around showing rigorous
finite-sample concentration guarantees for the relevant quantities, in particular matching lower and upper
bounds whenever possible. For the purposes of comparing and understanding such results, asymptotic analyses
often suffice, but in practical settings, finite sample analyses, with fully specified (and ideally well-optimized)
constants are necessary, and thus are strongly pursued in my work.

However, this overview focuses on the three expectation inequalities themselves, explaining their funda-
mental utility, and how they can be used to characterize and analyze various estimation problems. The reader
should come away with an understanding of why they are important, and ideally a curiosity as to how to
compute or bound the relevant quantities from finite samples. The interested reader is also invited to consult
my thesis proposal [4] for a brief introduction, or my dissertation [6] for a thoroughly detailed presentation.

1. The Empirically Centralized Rademacher Average [8]

A generic method for deriving upper and lower bounds for the error of
simultaneous mean estimationsimultaneous mean estimationsimultaneous mean estimationsimultaneous mean estimationsimultaneous mean estimationsimultaneous mean estimationsimultaneous mean estimationsimultaneous mean estimationsimultaneous mean estimationsimultaneous mean estimationsimultaneous mean estimationsimultaneous mean estimationsimultaneous mean estimationsimultaneous mean estimationsimultaneous mean estimationsimultaneous mean estimationsimultaneous mean estimation across arbitrary function families.

Suppose function family F ⊆ X → R, i.i.d. data sample x ∼ Dm, and i.i.d. Rademacher sequence
σ ∼ Um(±1) (uniform on ±1). I define the empirically centralized empirical Rademacher average as
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which intuitively measures the ability of F to spuriously correlate with noise (σ). More precisely, we have
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which further implies the asymptotic relationship
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This has immediate statistical applications in simultaneously estimating means across an arbitrary family
of functions F , and is also relevant in supervised and unsupervised machine learning settings, wherein F is
taken to be the loss of every function in some model class, and Ex

[
R̂m(F − Êx[F ],x)

]
is used to bound the

generalization gap (degree of overfitting) of the learned function.

For context, I note that the (non-empirically) centralized Rademacher average Ex
[
R̂m(F − ED[F ],x)

]
is

also known to control the supremum deviation, i.e., it admits bounds similar to (1). However, although it is
quite valuable as an analytical tool, the centralized Rademacher average can be difficult to work with given
only a sample, since computing or estimating R̂m(F − ED[F ],x) requires knowledge of true expectations

ED[F ] to evaluate, rather than just the sample means Êx[F ]. One convenient application of empirical

centralization is that R̂m(F − Êx[F ],x) removes this dependency, and it can easily be estimated via the
Monte Carlo method, wherein we sample to estimate the expectation over σ (Rademacher sequences), and
simply compute or upper-bound the supremum given the sampled σ.

2. The Power Mean (Welfare and Fair Machine Learning) [5]

Fairly quantifying wellbeing and illbeing within populations, with statistical and
computational guarantees for fair machine learningfair machine learningfair machine learningfair machine learningfair machine learningfair machine learningfair machine learningfair machine learningfair machine learningfair machine learningfair machine learningfair machine learningfair machine learningfair machine learningfair machine learningfair machine learningfair machine learning applications.

Given g groups, sentiment vector S ∈ Rg0+, and probability measure w ∈ Rg0+, we define the (weighted)
p-power mean for p ∈ (0,∞) as

Mp(S;w)
.
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The power mean Mp(·;w) over per-group risk values is an objective in fair machine learning tasks; p = 1
yields a utilitarian or weighted average optimal model, taking p→∞ converges to the minimax, robust, or
egalitarian optimal model, and 1 < p <∞ smoothly interpolate between these cases. Choosing p allows the
model designer to explicitly make decisions about how the learner should make fairness-sensitive tradeoffs
within the population. This parallels the social planner’s problem1 of welfare economics, in which one allocates
resources and creates policies to optimize wellbeing within a society.

When learning to optimize power means, there are two main sources of bias (generalization error). First,
as in standard risk (expected loss) minimization, there is selection bias over the function family F , which we
again control with Rademacher averages. The second issue is more subtle; since power means are nonlinear
functions of expectations, no simple unbiased estimator exists (as with, e.g., the standard deviation), which
we account for via large-deviation bounds on per-group risk values. In particular, suppose loss family
F ⊆ X → [0, r], take per-group distributions D1:g, and per-group samples x1 ∼ Dm1 , . . . ,xg ∼ Dmg . Now
define per-group supremum variances and Rademacher averages2
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E
x

[
sup
f∈F

∣∣∣∣Mp

(
i 7→ E

Di
[f ];w

)
−Mp

(
i 7→ Ê
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1Indeed, the power mean comes from the same axiomatic foundations of cardinal welfare theory, the only difference being that
to incentivize equitable redistribution, with welfare and allocations, we require p ≤ 1, whereas with harm and risk in machine
learning, we require p ≥ 1. Thus while the specific choice of p parameterizes how we wish to trade off between helping the most
harmed groups and minimizing overall harm, within these axioms, the power mean is the only reasonable objective for this task.

2The Rademacher average [1] is defined as Rm(F ,D)
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and like its empirically centralized counterpart, it is used to control the supremum deviation.
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In other words, the supremum variances and Rademacher averages, which are key quantities in controlling
the supremum deviation of simple expectations, also control the supremum deviation of power means.

3. The Inter-Trace Variance [7]

Characterizing the fundamental difficulty of mean-estimation from dependent samples
with a finite-samplefinite-samplefinite-samplefinite-samplefinite-samplefinite-samplefinite-samplefinite-samplefinite-samplefinite-samplefinite-samplefinite-samplefinite-samplefinite-samplefinite-samplefinite-samplefinite-sample variance statistic.

Let τ denote the relaxation time3 of an ergodic Markov chain M over some space X , and define the
trace-length t inter-trace variance of a function f : X → R as
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where M(t) denotes the stationary distribution of length-t traces drawn from M. Then

1
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(∞) ≤ v(2τ−1) ≤ v(∞) , and furthermore, ∀t ≥ τ : v(t) � v(∞) . (3)

The significance of these variance bounds is that we have necessary and sufficient bounds
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respectively, on the sample complexity i.e., the required number of Markov chain steps, of ε-δ additive mean
estimation, via Markov chain central limit theorems [12] and Bernstein-type [11, 13] inequalities.

As a statistic on an infinite sample, the asymptotic variance v(∞) is notoriously difficult to estimate or
bound [10], even heuristically. On the opposite end of this spectrum, v(1), which is generally termed the
stationary variance (as it reduces to the variance of the stationary distribution ofM), is easily estimated, but
is insensitive to temporal dependence within the chain, and thus leads to suboptimal convergence guarantees.
The relaxation time τ is the key ingredient here, as if it tells us that while the stationary variance v(1) may
yield asymptotically suboptimal convergence rates, and v(∞) may be prohibitively difficult to estimate, v(τ)

sits between them, matching both the simplicity of estimation of v(1) and the efficiency guarantees of v(∞).

In Summary Inequality (1) is purely a statistical concept that beautifully and concisely summarizes
decades of research in statistical learning theory in the i.i.d. setting. Inequality (2) bounds the sampling
error of a key target for fairness-sensitive computing, relevant to machine learning, resource allocations,
and algorithm selection, and concisely describes what should change when considering a population of
diverse subgroups, rather than individuals or homogeneous populations. Finally, inequality (3) is again purely
statistical, but now we have left the i.i.d. setting to provide guarantees for dependent (i.e., time-series) data
under a Markovian assumption.

In my work, statistics are placed at the forefront, because it is my sincere belief (and, if I dare say so,
my well-reasoned argument) that without considering the statistics of learning processes, copious additional
avenues of failure arise. For this reason, I developed the empirically centralized Rademacher average to
analyze and bound the generalization error of machine learning methods and other statistical processes, with
both asymptotically optimal guarantees and strong practical performance in the small-sample setting, all
from fully sample-dependent quantities with very few a priori assumptions. Similarly, no rigorous fairness
guarantee can be complete without consideration of the various biases that may arise due to finite-sample
estimation error. I thus argue for the power mean as a fair learning target, not only fundamentally from
a welfare-economics perspective, but also due to its convenient statistical properties; here generalization
error can be summarized by the gaps between the training set and distributional (or test set) power-mean

3The relaxation time τ is a standard measure of the degree of temporal autocorrelation between nearby samples drawn
from the chain M, and is defined as the multiplicative inverse of the spectral gap of M, i.e., assuming M has second absolute
eigenvalue λ2, τ

.
= 1

1−λ2
.
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objectives and per-group risk values, whereas methods based on fairness constraints [9] must consider the
estimation error of both the risk or accuracy of a model, as well as the demographic statistics involved in
the fairness constraints [14]. Finally, I investigated the trace variance v(t) partly to relax assumed a priori
knowledge of v(∞) in dependent data-analysis problems, but also because, as many have previously observed,
the i.i.d. assumptions often made in theoretical machine learning are often unrealistic in practice, so in order
to address the real problems of the world today, progress must be made in analyzing non-i.i.d. processes.

A Note on Statistical Estimation Each of the above three inequalities involve an easily estimated novel
statistic or key quantity that is a variant of a well-known concept that is far more difficult to estimate from
a finite sample. The above inequalities show that these novel variants can be used to control, bound, or
estimate statistical error in much the same way as their classical counterparts. However, the real utility of
these definitions only becomes apparent when one considers fully-empirical settings and attempts to relax a
priori assumptions on such quantities, due to their vastly improved ease of estimation.

In particular, here the empirically centralized Rademacher average Ex[R̂m(F − Êx[F ],x)] is a constant-
factor approximation of the centralized Rademacher average Ex

[
R̂m(F − ED[F ],x)

]
, the power mean welfare

Mp(S;w) closely resembles the additively separable welfare Mp
p(S;w), and the t-trace variance v(t) is a

constant-factor approximation of the asymptotic variance v(∞) for sufficiently large t. I show that the relevant
quantities in each of the three inequalities can easily be estimated within ε-δ additive error, whereas their
relatives are substantially harder to estimate. The statistical quantities, i.e., the Rademacher averages and
myriad variance concepts, characterize sample complexity and sampling error, while being fully estimable
from a sample, which leads to bounds on supremum deviations, see (1) & (2), as well as for mean estimation.

Concretely, I show sub-gamma type inequalities [3] for each quantity Z and an appropriate estimator
or empirical quantity Ẑm. In particular, here Z describes the supremum deviation over F , the supremum
deviation over p ≥ 1 power-means, or the mean of some f in a dependent sampling setting, and Ẑm is the
corresponding empirical supremum deviation or empirical mean. Assume Ẑm is a statistic over g groups
(g = 1 outside fairness settings), the relevant domain has range r, relaxation time τ (τ = 1 in i.i.d. settings),
δ ∈ (0, 1), and take v(τ) to be the supremum τ -trace variance of any f ∈ F over any Di. It then holds that

P
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m
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δ

m

) ≤ δ (4)

Inequality (4) is not a unified result under broad assumptions, but rather a summary of disparate results in
[8, 5, 7] for the specific Z described above. The specifics of each case vary, and often sharper bounds are
possible, but the key here is that each bound closely resembles the Bennett inequality [2], with logarithmic
dependence on 1

δ , weak dependence on range, and strong (asymptotically dominant) variance dependence.
The eagle-eyed reader may observe that I have broken my central promise, and stated a fourth inequality,

but I say it hardly counts, as it merely augments the central three, by specifying the rate at which the relevant
quantities (i.e., the legion of Rademacher averages, variance concepts, risk values, expectations, and power
means) may be estimated, and in any case, I could hardly conclude this piece without giving concrete idea of
what these estimation guarantees look like after spilling so much ink on singing their praises!

Sample Complexity and Progessive Sampling For single-function mean estimation tasks, (4) may be
applied verbatim, however the supremum deviation bounds require knowledge of Z (the expected supremum
deviation). Fortunately, this is exactly the purpose of the Rademacher average, and in particular, (1) &
(2) give such bounds. Furthermore, (empirically centralized) Rademacher averages, and even Monte-Carlo
estimates thereof, wherein σ is also sampled, admit estimation guarantees quite similar to (4), thus these
quantities can be fully-estimated from the sample. Dependence on the appropriate variance concept v(τ) is
also not a problem, as similar sampling bounds hold for the appropriate variance concepts, although since
variance is a quadratic quantity, their forms are necessarily different. In both cases, in conjunction with a
union bound, purely sample-dependent upper-bounds can be substituted into E[Z] or v(τ) to remove the need
for a priori variance assumptions, at no asymptotic cost.

These bounds on estimation error also immediately imply bounds on sample complexity, which characterize
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the sufficient sample size to obtain an desired ε-δ approximation guarantee. In particular, we have that
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Of course, without a priori knowledge of E[Z] or v(τ), this is not particularly useful. However, via the
progressive sampling technique, we can relax even this requirement. In this method, we essentially “guess and
check” with progressively doubling sample sizes (geometrically interpolating from the minimum sufficient to
the maximum necessary sample sizes), at each iteration computing the appropriate bounds, and terminating
when the desired estimation guarantee is met. Via this technique, with high probability, we can match the
above sample complexity to within log log factors4, despite the algorithm being oblivious to the quantities
that describe the appropriate statistical convergence rate (i.e., E[Z] and v(τ)).

A Taste of What is to Come My ongoing work is mostly focused on improving and broadening results in
these three overarching directions. In particular, I am working on further improving small-sample guarantees
with empirically centralized Rademacher averages, and developing new methods for bounding them, as well
as converting the resulting uniform bounds to relative bounds for statistical tasks with both low and high
frequency events. In the fair-learning setting, I am developing improved generalization bounds, tackling
welfare and the p < 1 case,5 as well as applications in fair reinforcement learning and other settings. There
are also unanswered questions about the relationship between the computational complexity of fair learning
(g > 1) and traditional learning (g = 1), and practical questions on how to efficiently optimize power-mean
objectives. In dependent estimation settings, I am currently looking for problems for which trace variance
estimation yields asymptotic improvement, in particular #P-hard counting problems and normalizing constant
estimation for Gibbs distributions, and investigating learning settings to which these methods may be applied.

I am also highly interested in combining ideas from these seemingly-disparate areas of study. On some
level, I have investigated most of the pieces of this puzzle somewhere in my work, but unfortunately, such a
change in setting does not often admit analysis via simple composability. Preliminary study in this direction
has encountered exciting technical challenges, for instance in adapting uniform convergence bounds or analysis
of empirical power means to non-i.i.d. settings, and I am excited for what the future holds!
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