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1 Introduction

I see my work as a rigorous interdisciplinary challenge to the machine learning status quo. I find myself equal
parts enthralled by the accomplishments of modern machine learning and disturbed by the harm caused by
industrial “AI systems.” As the real-world impact of machine learning continues to grow, I increasingly see
fairness as the most important topic in machine learning. I have always been drawn to statistical learning
theory to rigorously study learning and quantify overfitting, and this perspective informs my study of the
complex sociotechnical issues we face today. Many real-world fairness issues are due to basic errors (e.g.,
overrepresentation of white males in image datasets [Karkkainen and Joo, 2021] is distribution shift), but as
academics we have not made issues of fairness in machine learning easy to understand, and deep questions
remain regarding what fairness even means and how fairness interacts with learning. I see fairness and
statistics as as inextricably linked: fairness on the training set means nothing, and overfitting to fairness
often manifests in discriminatory ways given small minority group samples. Before discussing my research in
depth, I briefly state a few key points of my research philosophy and ethics.

While we can not always predict how our work will be applied, we do have a societal responsibility to
avoid working on problems likely to have harmful impact and to favor problems likely to have positive impact.
I strive to motivate my research with problems faced by applied researchers, practitioners, and society at
large. We also have an academic responsibility to study truly novel and interesting problems, and strive for
real progress in the field. It is always worth asking whether we are even solving the right problems. Are we
grounding our work in the interests of practitioners and the field at large? Is the community interested in our
problem, and should they be?

Even with a carefully-considered and well-motivated research problem, we must be cognizant of our
limited perspective. Others may pose problems in different but equally valid ways, or may study overlapping
problems, and while at times it’s worth arguing oven these differences, it is often more helpful to acknowledge
and address alternative perspectives and framings. A mathematician at heart, I see great value in making
analysis and algorithms general, while making methodologically necessary assumptions clear. Ultimately, it is
not our place to tell others, especially domain experts, what they want to compute; we should rather focus on
how to compute a desideratum and what is efficiently computable.

2 A Theory of Fair Machine Learning

The modern zeitgeist around fair machine learning centers imposing statistical parity constraints [Dwork
et al., 2012, Verma and Rubin, 2018] (equalized odds, equality of opportunity, outcome, etc.). While such
approaches seem intuitively fair, they suffer from computational intractability [Hu and Chen, 2020], mutual
incompatibility [Kleinberg et al., 2017], and can actually worsen outcomes for all groups [Hu and Chen, 2020,
Jorgensen et al., 2022, 2023].

I also criticize learning with statistical parity fairness concepts on a statistical level: if we enforce fairness
constraints on the training set, they are not guaranteed on the underlying distribution (i.e., we “overfit to
fairness”). Moreover, if we “overconstrain” the model during training to account for this, then for any sample
size, with arbitrarily high probability, (1) there may not exist any training-feasible model, and (2) the optimal
training-feasible model may be greatly outperformed by a true-feasible model that is not training-feasible.
Addressing these issues is quite challenging [Thomas et al., 2019, Yona and Rothblum, 2018], and can require
unbounded sample complexity.
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Axiomatic Theory The wellbeing of society overall and of disadvantaged or minority groups is well-studied
in welfare economics [Dalton, 1920, Debreu, 1959, Gorman, 1968, Pigou, 1912] and moral philosophy [Bentham,
1789, Parfit, 1997, Rawls, 1971], and prescriptive requirements for fair systems are often encoded in law
[Kumar et al., 2022, Selbst et al., 2024], so I ask, “Why did we as computer scientists need to redefine fairness?”
To briefly summarize centuries of thought, utilitarian welfare measures overall wellbeing as the sum or average
utility across a population [Bentham, 1789, Mill, 1863], Rawlsian or egalitarian welfare measures the minimum
utility [Rawls, 1971, 2001], and prioritarian concepts lie somewhere in between [Arneson, 2000, Parfit, 1997].
Utilitarianism is criticized for not incentivizing equitable redistribution, and egalitarianism is criticized for
ignoring all but the most disadvantaged groups in society. In contrast, prioritarianism encompasses various
justice criteria that prioritize the wellbeing of the impoverished, without ignoring others, making tradeoffs
between them in various ways. The Pigou-Dalton transfer principle [Dalton, 1920, Pigou, 1912] and the
Debreu-Gorman axioms [Debreu, 1959, Gorman, 1968] lead all welfare functions to concord with sums of
logarithms or powers of utilities, i.e., for g groups and utility vectors s ∈ Rg

+, for some p ∈ R, all fairness
concepts M(s) define a partial order over utility vectors that agrees with

M(s) = sgn(p)

g∑
i=1

spi , or M(s) =

g∑
i=1

ln(si) . (1)

This lays the foundation for my work, but the mathematical context of machine learning and estimation raises
a few issues.

1) Existing analysis is almost entirely based on welfare and utility, whereas machine learning often considers
loss. Simple transformations (e.g., negation) are insufficient, as we require nonnegative s in (1).

2) While directly applicable to individual level fairness, the theory does not gracefully handle heterogeneous
group sizes. This is important to many discrimination issues facing minority groups in machine learning,
such as differential performance of facial recognition or medical machine learning systems.

3) The scale of welfare functions, and thus the difficulty of approximation or estimation, varies with p.
Similarly, depending on p, (1) can be very sensitive to small changes to s, which complicates optimization
and estimation. Moreover, since (1) is only specified up to an ordering, are approximations even meaningful?

While one could introduce ad hoc objectives to address these issues, I wanted a “natural” characterization
of fair machine learning. I thus sought to show that the assumptions I carried as a computer scientist with
learning and estimation in mind could be expressed as simple axioms from which a class of fair objectives
arises.

The economics and philosophy literatures primarily treat utility and wellbeing, but in machine learning
we often center loss (disutility) instead of utility. I show [Cousins, 2021] that the theory of suffering-focused
ethics can produce a family of “malfare functions” that quantify societal suffering (rather than wellbeing).
Given nonnegative utility, we seek to maximize a quasiconcave welfare function W(s) with p ≤ 1 in (1), but
given nonnegative disutility, we instead minimize a quasiconvex malfare function

W

(s) with p ≥ 1 in (1).
I argue that in machine learning, we usually want models to generalize to unseen individuals, thus we

should target group-level fairness guarantees. However, the classical symmetry axiom (M(s) = M(π(s)) ∀
permutations π) would require all groups be treated equally, regardless of size. I thus introduced group
weightings w (probability vectors, where wi is the population frequency of group i), alongside the weighted
symmetry (M(s;w) = M(π(s);π(w)) for all permutations π) and weighted decomposability axioms (if w and
w′ differ only on groups with equal (dis)utility, then M(s;w) = M(s;w′)) to treat variably-sized groups.

To address issues of sensitivity of fairness concepts to small (dis)utility changes, and ensure their units
match those of (dis)utility (as in utilitarian and egalitarian welfare), I introduced the multiplicative linearity
axiom (M(αs;w) = αM(s;w)) and the unit scale axiom (M(1;w) = 1). These axioms are natural almost to
the point of triviality, but they are sufficient to characterize the cardinal value of fairness concepts, whereas
(1) specifies them only up to a partial ordering. These novel axioms, when combined with the Debreu-Gorman
axioms, characterize the weighted power-mean family, i.e., the class of all fairness concepts takes the form

Mp(s;w) = p

√
g∑

i=1

wis
p
i for p ̸= 0 , or M0(s;w) = exp

(
g∑

i=1

wi ln(si)

)
. (2)
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From these axioms alone stems the monotonicity property, i.e., for all p ≤ q, we have

min
i∈1,...,g

si = M−∞(s) ≤ Mp(s;w) ≤ Mq(s;w) ≤ M∞(s) = max
i∈1,...,g

si .

Thus power-mean justice criteria are sandwiched between the egalitarian minimum (p = −∞) utility or
maximum (p = ∞) disutility and the utilitarian arithmetic mean (p = 1) (dis)utility. In some sense,
power-means nonlinearly interpolate between these extremes, where moving towards egalitarianism magnifies
the impact of inequality, thus increasing malfare or decreasing welfare. Since units in power-means (2) agree
with (dis)utility (e.g., M2(s;w) is measured in dollars, not square dollars), we can reasonably interpret errors
(differences in Mp(·;w)) linearly, which is crucial to approximation and estimation.

Philosophical Implications to Fair Machine Learning During this foray into interdisciplinary literature,
I tried to keep my results grounded in contemporary fair machine learning research. Weighted risk minimization
is essentially the default approach to machine learning, and the now-standard response to machine learning
bias is to train on more balanced data. While a reasonable first step, this perspective is inherently utilitarian,
and thus does not incentivize equitable redistribution of harm. Minimax fair learning [Abernethy et al.,
2022, Diana et al., 2021, Shekhar et al., 2021] takes the Rawlsian approach of minimizing the maximum
group risk, but is thus susceptible to minority rule, and insensitive to all but the most-disadvantaged groups.
By extending welfare theory to develop a novel theory of fair machine learning, I unearthed a spectrum of
objectives that empower modelers to express and optimize their own fairness concepts. In particular, the
empirical malfare minimization objective, given loss function ℓ and mi labeled pairs (xi,·, yi,·) for each group
i, is

argmin
θ∈Θ

Mp

(
i 7→ 1

mi

mi∑
j=1

ℓ
(
hθ(xi,j),yi,j

)
;w

)
, where i 7→ f(i)

.
=
〈
f(1), f(2), . . . , f(g)

〉
,

for some w-weighted p-power-mean. This generalizes weighted risk minimization (p = 1) and minimax fair
learning (p =∞), while contextualizing and addressing shortcomings of both approaches for p ∈ (1,∞).

This welfare-centric approach centers fairness and societal impact, which forces modelers to consider
not their own goals, but rather the impact of their model on others. In contrast, fairness constraints
amend existing machine learning objectives, and can be tuned to be of secondary importance (industry
incentivizes profit optimization, considering fairness only insofar as profits or reputation are harmed). I see
this radical perspective on machine learning objectives as invaluable in the discussion of regulation, rights,
and responsibilities surrounding AI systems.

A Concrete Example Let us now consider a simple example of the tradeoffs we must consider in a
social planning problem. Suppose we have to select a single type of drink to serve to three guests from the
below options. This illustrates issues of mutual unsatisfiability and statistical estimation that may arise with
constraint-based methods, but do understand that it serves as a metaphor for similar tradeoffs that need to
be made in machine learning, e.g., which features to consider in a linear model, or what basic patterns to
learn to recognize in the lower layers of a neural network.

Option s
M−∞(s) M0(s) M1(s) Parity Gap
mini si

3
√∏

i si
1
3

∑
i si maxi si − mini si

Water ⟨1, 1, 1⟩ 1 1 1 0
Kefir ⟨2, 3, 1⟩ 1 3

√
6≈1.82 2 2

Kombucha ⟨7, 2, 0⟩ 0 0 3 7

Observe that Water is the “fairest” choice in terms of the parity gap (max - min utility), but everyone
would weakly prefer Kefir, and Kombucha has the highest total utility. Fairness constraints on the parity gap
could force to selection of Water, to no one’s benefit, and constraints on the parity gap may be mutually
unsatisfiable with constraints on other fairness statistics, such as utility variance or Atkinson’s indices. In
contrast, optimizing power-means will never prefer dominated outcomes, and optimizing egalitarian welfare
M−∞(·) captures the essence of the parity gap seeking to prevent harm to the most disadvantaged group
without causing such issues.
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Moreover, power-means directly encode fairness concepts, and generally preserve convex or concave
curvature for optimization purposes, whereas many parity constraints are non-convex, and thus may fracture
a convex feasible parameter set into one or more non-convex regions.

As for statistical concerns, the convergence of power-mean estimates is now well-understood [Cousins,
2021, 2022, 2023b], whereas parity-constrained optimization must consider estimated objective and estimated
constraints. Estimating s from bounded continuous random variables, for no sample size can we determine
whether the parity gap of Kefir is < 2, thus optimizing for, say, utilitarian welfare under a parity gap
constraint of < 2 is not possible for any sample size.

Applications I first applied this theory during my doctoral studies to develop a concept of fair-PAC
(FPAC) learning. I ask, “given a concept class H and g per-group probability distributions D1,D2, . . . ,Dg,
is it possible to ε (approximately) δ (probably) recover the optimal h∗ with finite sample complexity for any
power-mean malfare function? Is the sample complexity of fair learning polynomial?” I answer [Cousins,
2021] affirmatively, and moreover show that, statistically speaking, for finite-class classification, PAC and
FPAC learnability are equivalent. As for computational complexity, I find that standard conditions for efficient
convex optimization (e.g., SVM, GLM, etc.) also suffice for malfare objectives. These results stem from
Lipschitz-continuity of power-mean malfare functions (i.e., p ≥ 1). I show [Cousins, 2023b] that power-mean
welfare functions are Lipschitz continuous iff p < 0, but only Hölder continuous for p ∈ (0, 1). I then generalize
FPAC learning to optimization of arbitrary families of malfare or welfare functions, and show that, for
power-mean welfare, sample complexity may depend exponentially on min( 1p ,mini∈1,...,g wi).

In practice, data distributions greatly impact learnability, and in fair machine learning, each group can
have their own data distribution and sample size. Moreover, in the real world, most machine learning is
profit-driven, data are actively collected at a cost, and fairness is a tertiary reputational concern. I thus
ask [Cousins, 2022], “How can we optimally allocate sampling effort to efficiently accomplish our goals?”
I show that the fairness concept, model class, and data distributions interact in complicated ways, but
progressive-sampling algorithms can actively sample based on estimated greedy improvement to optimize a
given fair objective with near-optimal sample complexity.

Feeling as though I’ve only scratched the surface, I endeavor to explore these ideas in the broader machine
learning and algorithmic fairness context. In Cousins et al. [2022], Michael Littman, Kavosh Asadi, and I
study fair reinforcement learning, where each group i provides noisy reward feedback Ri(s, a) to an agent,
who optimizes the welfare of per-group value functions (i.e., expected γ-geometrically discounted reward). In
our parlance, we seek

argmax
π

Mp

(
i 7→ E

π,s

[ ∞∑
t=0

γtRi(st, π(st))

]
;w

)
. (3)

We give an algorithm that, with high probability, takes polynomially many exploration actions before always
producing ε-optimal policies. Cardinal welfare theory also sees applications beyond machine learning. During
my postdoctoral studies, I collaborated with Yair Zick and Vignesh Viswanathan to analyze such objectives
in fair allocation settings. We show sufficient conditions for efficient optimization in restricted classes of
submodular valuation functions [Cousins et al., 2023c,d].

Elicitation and working from partial information In Mazzetto et al. [2021], for convex classifiers,
Alessio Mazzetto, Dylan Sam, Stephen Bach, Eli Upfal, and I replace known class labels with confidence sets
S ⊆ △m

c over feasible labelings, and show that we can efficiently adversarially train c-class classifiers. In Dong
and Cousins [2022], Evan Dong and I show the same for adversarial training over unknown group labels, i.e.,
S ⊆ △m

g , with minimax fairness objectives, i.e., for m unlabeled training points x, labels y, and unknown
group IDs z, we pose

argmin
θ∈Θ

max
y∈S

1

m

m∑
i=1

c∑
j=1

yj · ℓ(hθ(xi), j) , or argmin
θ∈Θ

max
z∈S

max
i∈1,...,g

∑m
j=1 zj,i · ℓ(hθ(xj),yj)∑m

j=1 zj,i
. (4)

In both works, we apply statistical learning techniques to induce linear constraints on class labels y or group
ID labels z, and then adversarially optimize subject to said constraints. This involves estimating label
frequencies on a labeled dataset, then constructing an uncertainty set S to respect these statistics (to within
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probabilistic error), making these semisupervised methods. Crucially, the amount of labeled data to construct
S scales with the number of statistical constraints, whereas the generalization error of the trained model
scales with the L1 radius of the S, the complexity of the model class H, and the amount of unlabeled data.

In collaboration with Justin Payan and Yair Zick, I applied similar methods to reviewer assignment
[Cousins et al., 2023b], wherein the goal is to match n1 papers to n2 reviewers to optimize total assigned
affinity. Realistically, reviewers can’t bid on all papers, so we rely on other sources of information (e.g.,
keyword or NLP similarity), which leaves low confidence on the quality of the review a match would produce.
We thus adversarially optimize total affinity over an uncertainty set S ⊆ Rn1×n2 is of large matrices, and
bound weighted square error of affinities from some predicted centroid (e.g., TPMS [Charlin and Zemel, 2013]
or some such NLP-based score), which yields ellipsoidal confidence sets. This is statistically efficient, and also
computationally convenient for the adversary (convex SOCP). Axis-aligned ellipsoids also arise naturally as
Gaussian contours, where the affinity of each paper-reviewer pair has some mean and variance, which the
optimal allocation nonlinearly incorporates.

We are currently working on [Cousins et al., 2023a] generalizing to objectives to include soft robust
(expected + worst-case welfare) and fairness constraints (e.g., by paper sector), as well as methods of generating
smaller (more accurate and more precise) uncertainty sets using collaborative filtering and sophisticated
generalization bounds (rather than ad hoc fixed predictive models and simple tail bounds). We are also
considering temporal aspects to this problem: in an online setting (rolling review), we may need to allocate
papers to reviewers now, while considering that reviewers may also be needed next month to review a new
crop of papers, which results in difficult planning-style decision making under various models of uncertainty
about the future.

Playing on the ideas of fairness, robustness, and uncertainty laid out in these works, I draw deep
philosophical connections between them in Cousins [2023a]. The original position or veil of ignorance
argument for egalitarianism of John Rawls [1971, 2001] states that our concept of fairness, justice, or welfare
should be decided from behind a veil of ignorance, and thus our preferred world should consider everyone
impartially (invariant to our identity). This can be posed as a zero-sum game, where a Dæmon constructs
a world, and an adversarial Angel then places the Dæmon within their world. This game incentivizes the
Dæmon to maximize the minimum utility over all people (i.e., to maximize egalitarian welfare). Thus
egalitarianism arises from extreme risk aversion or robustness, and I show that by weakening the adversarial
Angel, milder forms of robust objective arise, which I argue are effective robust proxies for fair learning or
allocation tasks. In particular, utilitarian, Gini, and power-mean welfare and malfare concepts all arise from
modified adversarial games. This has philosophical implications for the understanding each of these concepts,
and, exploiting the duality between fairness and robustness, I show that these robust fairness concepts can all
be efficiently optimized under mild conditions via standard maximin optimization techniques.

3 Current and Future Work

My prior work leaves many unanswered questions, both practical and theoretical, regarding welfare-centric
fair machine learning. I now discuss ongoing and future work that extends the scope and usability of such
methods.

Convex Optimization I am currently supervising several undergraduate projects on convex optimization
of nonlinear malfare objectives. One such project applies biased stochastic gradient descent (bias due to
the nonlinearity of malfare) to construct efficient first-order optimization routines that balance per-iterate
cost-savings against a larger number of required iterations. In another student project, we observe that
power-means of smooth or strongly convex per-group risk functionals are not in general smooth or strongly
convex. However, we show that proximal gradient descent updates leveraging the structure of the malfare
objective, i.e., if Ri(θ) is the risk of group i for model parameters θ, the proximal operator

θ(t+1) ← argmin
θ∈Θ

Mp

(
i 7→ Ri(θ

(t)) +∇θ(t)Ri(θ
(t)) · (θ − θ(t)) ; w

)
+ γ(t)

2

∥∥∥θ − θ(t+1)
∥∥∥2
2

,

can yield convergence rates in terms of the smoothness or strong convexity properties of per-group risk
functionals (rather than the entire objective), and O( 1ε ) iterations may suffice to ε-optimize the objective
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(as opposed to O( 1
ε2 ) iterations in general). Finally, a third student project studies the differential-privacy

implications of fair training. Is fair training equally private for all, or are smaller groups “less private” (i.e.,
can we provide some εi and δi for the privacy loss w.r.t. changing one sample from group i)?

Fairness Concept Elicitation I now describe an ongoing research effort that automates aspects of fairness
concept selection, which arises in fair machine learning and allocation settings. Axiomatic theory only
characterizes fairness concepts up to the power-mean family, and within this class, reasonable people can
disagree, thus we can not normatively argue a modeler “should” adopt some fairness concept. Understanding
or expressing one’s fairness concept requires critical quantitative thought about a fundamental qualitative
human process, and for systems that impact large numbers of people, it’s worth asking, “whose fairness
concept should be optimized?” In collaboration with Yair Zick and several of our students, the goal is to
empower modelers by interactively eliciting human fairness concepts to within ε error, by issuing binary
queries as to which of two outcomes is preferable. To measure distance between fairness concepts M and M′,
we take the supremum distance

∆(M,M′)
.
= sup

s∈[0,1]g
|M(s)−M′(s)| .

Bounding this metric ensures that, assuming unit-bounded utility, the true and elicited welfare functions
essentially agree. We show that, for power-means, binary queries elicit halfspace cuts on p, thus Θ(log n)
queries are necessary and sufficient (via binary search), where n is the number of distinct p in an ε grid w.r.t.
∆(·, ·) distance. To bound n, we define the minimal additive upper-bound

∆↑(Mp(·;w),Mq(·;w))
.
=

w q

p
sup

s∈[0,1]g

∂

∂r
Mr(s;w) dr ,

which is the smallest upper-bound to ∆(Mp(·;w),Mq(·;w)) for which the triangle inequality holds with
equality. We show that the ε search grid on the interval [p, q] contains n ≤ 1

ε∆
↑(Mp(·;w),Mq(·;w)) points,

with asymptotic equivalence limε→0 εn = ∆↑(Mp(·;w),Mq(·;w)), thus binary search requires Θ(log 1
ε +

log∆↑(Mp(·;w),Mq(·;w))) binary elicitation queries. We are currently seeking grant funding for this project,
and hope to extend our analysis to other classes of fair objective while considering human factors.

References
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