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Introduction My research has always been broadly interdisciplinary, with a focus on introducing rigorous
modern statistical techniques and finite-sample concentration-of-measure analyses into existing problem
domains of real-world interest. I have worked as such in computational biology [6], traditional machine
learning [11, 2, 7, 14, 13], empirical game theory [18, 21, 19, 20], data science settings [1, 15, 9, 5], and
Markov-chain Monte-Carlo analysis [5, 13], though recently my focus has been fair machine learning [3, 10, 4].

In many cases, the state-of-the-art had not advanced beyond asymptotic Gaussian CLT, heuristic
permutation tests, or extremely loose Hoeffding-union bounds. I improved existing techniques by introducing
more sophisticated analyses, improving the rigour of asymptotic and approximate methods with finite-sample
guarantees, and sharpening existing finite-sample bounds to nearly match asymptotic lower-bounds. To do
so, I have introduced several new analytical tools, such as the empirically centralized Rademacher average [8],
which I showed to close the asymptotic gap between upper and lower bounds for the uniform convergence of
empirical means to their expectations, and the inter-trace variance [5], which similarly closes the gap for
mean estimation from dependent samples (traces) drawn from Markov chains.

Overall, my goal has been to push these types of analyses as far as possible, matching lower bounds where
appropriate, without sacrificing rigorous finite-sample guarantees. This has been rewarding and theoretically
interesting, as it tells us which problems are actually hard (as opposed to which problems merely appear
difficult due to analysis artifacts), and practically it has also been extremely fruitful, as many data science and
sampling algorithms are limited by the amount of data that must be collected or processed. As a practical
vignette, in [9] I showed that three estimators for the betweenness centrality1 of all graph vertices, namely the
RK, ABRA, and BP estimators, can be contrasted directly and sharply vis-à-vis their sample complexities,
as measured both by Rademacher averages and (per-vertex) variances, whereas prior work showed only loose
and mutually-incomparable upper-bounds on the sample complexity of each.2 Historically, many consider
VC-theoretic, entropy integral, and other learning-theoretic bounds to be elegant and interesting, but of little
practical use, due to prohibitively large constant factors on sample complexities, and much of my work aims
to challenge this viewpoint, both via lower-bound comparisons and practical experimentation.

In particular, a major theme that arises in my work is taking various minimax (knowledge-aware) sample
complexity lower bounds, and showing knowledge-agnostic analyses and algorithms with matching or nearly
matching sample complexity. Lacking a priori-knowledge of, e.g., variances, Rademacher averages, or (sharp
bounds on) mixing times, these algorithms necessarily have dynamic sample-consumption (via progressive
sampling), yet still they yield high-probability sample-complexity upper-bounds, matching (knowledge-aware)
lower-bounds to within small constant factors and log-log terms (to account for early termination in progressive
sampling schedules). This arises, for instance, in my work on uniform convergence bounds with centralized
Rademacher averages [8], and also in variance-aware bounds over independent or rapidly-mixing Markovian
processes [12, 5, 13]. In all cases, the interesting part of the work is showing that, even though we don’t
assume knowledge of key quantities in such minimax-lower bounds, we can still nearly match them, essentially
by replacing dependence on a priori knowledge with appropriate data-dependent estimates. The main challenge

1Roughly speaking, the betweenness centrality of vertex v is the proportion of shortest paths in a graph that contain v.
2Ironically, it is the BP estimator, proposed years before RK or ABRA, which has the best statistical performance, but this

was unclear without applying sharper statistical analysis techniques and contrasting lower and upper bounds.
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that arises is that coarse application of weak concentration of measure bounds (i.e., Azuma-Hoeffding bounds)
generally introduce asymptotic gaps in sample complexity, but in my work more careful analysis in many
cases closes these gaps (up to log-log factors).

Research Ethics As a young student, I largely thought researchers and educators were essentially ethically
neutral parties, as the consequences of their research and teaching largely depend on what their students
and readers do with their knowledge. With a greater appreciation for the harmful consequences of industrial
and governmental application of modern technology (in particular machine learning) in recent years, and
the simple fact that the deep understanding of scholars in technical fields put them in a unique position to
commentate and contemplate the ethical dimensions of their work, I now view ethical considerations as a core
component of scholarly responsibility. For these reasons, I have chosen to shift my focus to clearly ethical
research, with immediate and obvious real-world social-good impact.

However, it is my position that this does not mean my work needs to be any less technically rigorous
or academically interesting, as I have striven to bring the same rigor and techniques from my statistical
learning theory research into the field of fair machine learning. This has opened up many interesting research
questions, largely untreated by the theoretical community, and only heuristically addressed in the existing
fairness literature. I see great value in placing fairness-sensitive analysis on firm theoretical ground, as without
theoretical guarantees, it’s quite difficult to determine if a putatively-fair method will produce subtly-biased
or unfair results in new real-world applications.

Applications in Fair Machine Learning While on the face of it, a statistical-learning-theoretic perspective
on fair machine learning may seem unorthodox, as problems of bias and fairness can be hard to precisely
characterize mathematically. Indeed, much of the existing work has focused on showing practical issues with
existing systems (w.r.t. both data bias and lack of appreciation for how näıve learning objectives may yield
unfairness), and experimental support for new methods. However, I argue that this theoretical perspective is
invaluable, as it both leads to stronger guarantees in the fairness domain, and it also pushes us to precisely
define and explore what we want fairness to mean.

In my work, I seek to apply statistical learning tools to rigorously prove fairness guarantees in machine
learning. Arguably, historic failures of fairness in machine learning have largely occurred due to lack of
understanding and rigorous analysis in existing methods, so I believe putting fair learning methods on sturdy
theoretical ground with techniques from learning theory is valuable not only as an academic exercise, but also
as a paradigm to instill confidence in the fairness of learning methods. I see this as indispensable, as what is
the history of machine learning, if not the endless cycle of developing new methods models, recognizing their
potential to overfit, and analyzing the phenomenon, only to replace them with the next generation and begin
anew? After all, many have argued [16, 17, 3], what good is showing that a model obeys a demographic
parity constraint on the training set, if one can’t also guarantee that (at least with w.h.p.) a similar fairness
condition holds over the underlying distribution?

In fair machine learning, I argue that overfitting is manifest not only as generalization error on risk
or objective values, but also in overfitting to fairness, wherein models appear fair in training, but fail to
be so in reality. For example, fair training methods, e.g., optimizing (constrained) objectives sensitive to
protected group membership, may yield selection bias, and thus fairness constraints are violated, true welfare
is significantly lower than on the training set, or model performance is substantially worse for some groups.
Consequently, although such methods may improve fairness, training performance and constraints overstate
their efficacy, and statistical analysis is the tool that allows us to understand the degree to which fairness in
training may degrade after deployment.

In this line of inquiry, I seek to show that it is computationally tractable to optimize a model w.r.t.
some notion of fairness, and that the “empirical fairness” of a model is reflective of its “true fairness” over
a (similarly distributed) population. From a welfare-theoretic perspective, this reduces to showing that a
measure of group-wellbeing (i.e., minimax-optimality over the average loss among multiple groups) can be
optimized efficiently (i.e., bounding optimization error), and also that the hypothesis class is sufficiently
simple so as not to “overfit to fairness” (i.e., bounding sampling or generalization error). These goals closely
align with bounding optimization and generalization error in standard machine learning settings, though
here our objective function is not generally a simple average statistic, so we require tools beyond standard
mean-bounds and uniform convergence.

2



−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

1

2

3

4
p = 1

p

W

p(1, 2, 3)

Figure 1: Power-mean malfare
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p(1, 2, 3), plot-
ted as a function of p. Note p ≥ 1 is required
for malfare functions, but p ≤ 1 are appropriate
for use as welfare functions.

In [3], the fairness concept is malfare, an analog of
cardinal welfare used to measure overall disutility across a
population of g groups, given some disutility vector S ∈ Rg0+

where Si denotes the dissatisfication of group i. Subject
to appropriate axioms, malfare is restricted to the p-power-
mean family (see figure 1)

W

p(S)
.
= p

√√√√1

g

g∑
i=1

Si , (1)

for p ≥ 1, or weightings thereof. In machine learning set-
tings, I take Si to be the risk (expected loss) of group i over
some distribution Di, thus

W

p(S) summarizes overall risk
across the entire population. Here p = 1 yields the arith-
metic mean risk (utilitarian), and taking p→∞ converges to the worst-case or maximum risk (egalitarian),
thus p controls the societal concept of fairness, or in other words, the degree to which we favor improving a
model for groups most negatively impacted by it, at the expense of overall performance.

A hypothesis class H ⊆ X → Y is fair-PAC-learnable w.r.t. some loss function ` if for any confidence
parameters ε > 0, δ ∈ (0, 1), with bounded sample complexity m(ε, δ), an algorithm can, given any malfare

function

W

(·) and per-group instance distributions D1:g, learn a hypothesis ĥ ∈ H s.t. with probability at
least 1− δ, it holds

W

(
i 7→ E

(x,y)∼Di

[
`(ĥ(x), y)

])
≤ ε+ inf

h∗∈H

W

(
i 7→ E

(x,y)∼Di

[
`(h∗(x), y)

])
. (2)

For g = 1 and the 0-1 loss, this reduces to standard PAC-learnability, as E(x,y)∼Di
[
`(h∗(x), y)

]
is the expected

loss (risk) for group i on distribution Di.
I argue that this is a clean generalization of PAC-learning and risk minimization, and with the specific

choices of axioms made in [3], we obtain an interesting class containing fair variants of many classic machine
learning models, including but not limited to those with convex risk objectives exhibiting uniform convergence
under mild regularity constraints (e.g., SVM, GLM, convex combinations of experts, etc.). Despite the
apparent simplicity of the idea, it is often difficult to get comparable guarantees in other fair learning settings.
For example, for fairness-constrained optimization, the sample complexity of identifying whether a hypothesis
satisfies a fairness constraint on the underlying distribution can be unbounded, and for welfare maximization,
important welfare functions like the Nash social welfare W0(S)

.
= p
√∏g

i=1 Si can be Lipschitz discontinuous
in S, potentially also resulting in unbounded sample complexity.

The Case of the Missing Data: On Fair Learning, Data Quality, and Robust Learning Guarantees
In [14], I address the highly practical problem that real-world data often either lack or have only partial
label information. In particular, I use various semisupervised methods to obtain partial label information,
including leveraging statistics of weak labelers and a small labeled training set. I then establish a feasible
set Y of possible labelings y ∈ Ym for an unlabeled training set x ∈ Xm, and cast risk minimization as a
minimax optimization problem over the training data, i.e., w.r.t. some loss function ` : Y × Y → R0+, I pose

argmin
θ∈Θ︸ ︷︷ ︸

Model
Parameters

max
y∈Y︸︷︷︸

Adversarial
Labeling

1

m

m∑
i=1

`
(
hθ(xi),yi

)
︸ ︷︷ ︸

Empirical Risk

, (3)

wherein we seek to optimize model parameters θ ∈ Θ, while an adversary selects the worst possible feasible
labeling y given θ. Standard convex optimization routines yield polynomial-time training efficiency guarantees,
and I show generalization bounds via (empirical) Rademacher averages and robust minimax estimation
bounds, thus addressing both the computational and statistical aspects of the learning problem.

Crucially, operating over feasible sets and producing minimax guarantees yields hard probabilistic
guarantees under minimal assumptions. Such methods circumvent potential bias issues due to model
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misalignment in methods like label imputation, or the independence assumptions of, e.g., Dawid-Skene
estimators, theoretical guarantees for both of which generally require difficult-to-validate assumptions.

Unconstrained Group IDs{
z ∈ [0, 1]m×g

∣∣ ∀i: ∥∥zi,·∥∥1
= 1
}

Constraint 2

Constraint 1

Feasible Set Z
Intersection of all constraints

Figure 2: A feasible set Z of group labelings is
generated by the intersection of multiple con-
straints on the simplicial space of possible per-
instance group labelings.

Data-quality issues often compound unfairness, as major-
ity groups are often well-studied, with copious high-quality
data available, while marginalized or minority groups are un-
derstudied, and available data lack in quality. I’m currently
working in the setting wherein only partial information
is available on protected group membership. In particu-
lar, here data are triplets (x, y, z) ∈ (X × Y × Z), where
Z .

= {1, 2, . . . , g} is a (WLOG finite) space of g protected
groups. Given m training points, we observe covariates x1:m,
and labels y1:m, but not group identities z1:m. Instead, we
are given a feasible set Z of distributions over Zm, i.e.,
each z ∈ Z is a right-stochastic matrix z ∈ [0, 1]m×g, and
zi,· (row i) is thus a distribution (weighting) over groups.3

The task is then to perform (group-dependent) fair learning,
with rigorous statistical guarantees.

Concretely, in this setting, the empirical malfare min-
imization training objective is

argmin
θ∈Θ

max
z∈Z

W

j 7→ 1∑m
i=1 zi,j

m∑
i=1

zi,j`
(
hθ(xi),yi

) , (4)

which like (3) may be solved with convex programming when loss is convex in θ.4 Finally, for fairness-
constrained objectives, given fairness statistics C(. . . ) representing constraints on, e.g., ε-demographic-parity,
ε-equality-of-opportunity, etc.,5the constrained training objective is (WLOG)

argmin
θ∈Θ s.t.

∀z∈Z: C(hθ(·),x,y,z)�0

1

m

m∑
i=1

`
(
hθ(xi),yi

)
. (5)

Optimizing (5) is often computationally difficult, however, for instance when Z is defined by linear constraints,
C(. . . ) is a linear function of per-group risk values, and again group proportions are roughly constant, we
can (rigorously) approximate C(. . . ) and bound the feasible set with a simple linear constraint set.

In each of (3), (4), and (5), generalization guarantees are possible; these depend both on the degree
of overfitting in the model, and the degree of uncertainty in the feasible set Z. Overfitting is a function
of the amount of unlabeled data m, as well as the complexity of the model class parameterized by θ ∈ Θ
(as described by, e.g., a Rademacher average), whereas uncertainty in the feasible set depends on how it is
generated (discussed in the sequel). For now, note that as Z contracts to a point, the adversary becomes
powerless, and the bounds reflect this, reducing to standard (non-adversarial) guarantees as the diameter of
Z or minimax gaps w.r.t. Z, Θ and `(·, ·) tend to 0.

Concretely, this project was motivated by the fact that many datasets do not contain fine-grained
gender or race information; for example, the race attribute of the classic adult dataset contains only
{White, Asian-Pac-Islander, Amer-Indian-Eskimo(sic), Other, Black}, and without more detailed infor-
mation, it is difficult to even study fairness questions. Suppose we are interested in a fine-grained notion

3We generally assume each individual is deterministically associated with a single group, but relaxing this to weightings over
groups and applying linear statistical constraints generates a feasible set Z that is a convex H-polytope. This convex relaxation
ensures that, e.g., the inner maxz∈Z operation of (4) is tractable, so long as the objective is concave in z.

4Technically, due to the ratio 1∑m
i=1 zi,j

, this can be non-convex, but when Z is constrained such that 1∑m
i=1 zi,j

is roughly

constant for all z ∈ Z, j ∈ 1, . . . , g, it can be approximated efficiently.
5Note that to ensure the constraints are satisfied on the underlying distribution (w.h.p.), a sharper constraint must be

imposed on the training set, the value of which must itself be a function of the degree of overfitting. We thus consider only
inequality constraints, as equality constraints are in general impossible to guarantee due to estimation error.

4
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of race,6 e.g., one that subcategorizes Asian-Pac-Islander into South-Asian, East-Asian, etc. The goal
of this project is to learn fairly across these groups, and to do so reliably (with generalization guarantees),
w.r.t. various fairness concepts, by constraining the set of feasible group memberships z to Z, and learning
robustly w.r.t. the uncertainty in Z.

The given race groups do at least provide individual-level constraints, i.e., people listed as Asian-Pac-Islander
could feasibly be placed into the South-Asian or East-Asian groups, but likely not the Black or White

groups. Similarly, population demographics imply probabilistic group-level constraints, i.e., the proportion
of individuals in the dataset belonging to each fine-grained racial group should approximately match the
population proportions (w.h.p.), which establishes some dense global linear constraints on group membership,
i.e., if such statistics are not respected for a putative group labeling z, then z is infeasible.

These constraints leave a large feasible set Z, under which minimax learning guarantees may be vacuous,
since, e.g., the wealthiest X% could be placed into one Asian-Pac-Islander subgroup, and the most-
impoverished remainder into another, or vice versa, while still respecting proportionality constraints. However,
additional constraints can alleviate such issues. For instance, covariates like native-country can be highly
correlated with race, and may thus be used, not by, e.g., assuming all members from country X have race
Z, but instead by assuming training-sample proportions should approximately match known statistics on
the race of immigrants from each country, and constraining Z appropriately. The process of generating a
feasible set Z of group labelings is illustrated in figure 2. More sophisticated methods are indeed possible,
employing, e.g., weak labelers, clustering, and inter-feature correlation statistics — such methods are the
subject of ongoing work. Let it suffice to say for now that when a group of statistical constraints yields
a feasible set Z of small `1 diameter, i.e., 1

2m supz,z′∈Z
∥∥z − z′

∥∥
1
≈ 0, then robust learning methods can

effectively learn fairly, despite incomplete group-membership information.

My Work as a Coherent Research Agenda One can argue, and not baselessly, that the study of fair
methods in machine learning is the most real-world impactful research area in computer science today. I’ve
made the case that rigorous theoretical justification of such methods is crucial to any such theory. Still,
to claim that the work of machine learning theorists even comes close to spanning the breadth of settings
considered by machine learning practitioners would be absurdly näıve. Despite my passion for theoretical
machine learning, I appreciate that strong assumptions made in order to develop said theory are at best
vague approximations of the assumptions we can safely make or verify in practice, e.g., the i.i.d. assumption,
lack of distribution shift, boundedness, etc., and furthermore the availability of labeled data is generally a
prerequisite for the theory, and with insufficient data come no guarantees.

In ongoing work, I strive to relax the assumptions made by classical statistical analyses of machine learning
problems, letting the balance between what is needed in practice and what is feasible to bound in theory serve
as the lodestone to point to problems I meaningfully contribute to. For example, in addition to my work on
semisupervised methods with partial group membership information, I’ve worked on adapting supervised fair
learning guarantees to reinforcement learning settings [4], and I’m currently working on adapting them to
temporally-dependent settings (e.g., learning from time series or autoregressive data).

The theme running through all of my work is the importance placed on rigorous guarantees for domain-
appropriate properties in various probabilistic processes, whether it be for (fair) machine learning tasks,
sampling problems (mean estimation guarantees), or in data science (Nash equilibria, frequent itemsets,
betweenness centrality, etc.) settings. In particular, almost all of my papers rigorously show finite-sample
probabilistic guarantees in some probabilistic setting, and overall my work illustrates that while such guarantees
may induce significant proof complexity, often they asymptotically match or nearly match known lower
bounds for sample complexity and approximate central-limit-theorem bounds. I argue that this additional
analytical overhead is a price well-worth paying, as finite-sample guarantees are a necessary component in
understanding the behavior and failure modes of machine learning and data science systems. As we see
machine learning increasingly employed in our day-to-day lives, and witness the catastrophic consequences of
failures of such systems, the importance of rigorous analysis of these methods to diagnose, understand, and
avoid such negative outcomes becomes increasingly apparent.

6Let us for now put aside the issues inherent in the socially-constructed definition of race itself, as the goal is to learn while
considering predefined racial groups fairly.
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