ICML 2021

Adversarial Multiclass Learning under Weak Supervision with Performance Guarantees

A. Mazzetto*

. Cousins* D. Sam

S. Bach

E. Upfal

ICML 2021

Adversarial Multiclass Learning under Weak Supervision with Performance Guarantees

A. Mazzetto*, C. Cousins*, D. Sam, S. Bach, E. Upfal cyrus_cousins@brown.edu

Brown University

18-24th July 2021

Setting the Scene

ICML 2021 Adversarial Multiclass Learning under Weak Supervision with

A. Mazzetto*
C. Cousins*
D. Sam
S. Bach
E. Upfal

Performance Guarantees

Supervised Setting

Large labeled set X_L , Y_L

Setting the Scene

ICML 2021
Adversarial Multiclass
Learning under Weak
Supervision with
Performance Guarantees

A. Mazzetto*
C. Cousins*
D. Sam
S. Bach
E. Upfal

Supervised Setting

Large labeled set X_L , Y_L

Semi-Supervised Setting

Small labeled set X_L , Y_L + Large unlabeled set X_U

Examples of Weak Labelers

ICML 2021 Adversarial Multiclass Learning under Weak Supervision with Performance Guarantees

- A. Mazzetto*
 - . Cousins* D. Sam
 - S. Bach
- E. U

cyrus_cousins@brown.e

Examples of Weak Labelers

ICML 2021 Adversarial Multiclass Learning under Weak Supervision with Performance Guarantees

- A. Mazzetto* C. Cousins* D. Sam
- E. U
- ıs_cousins@brown

Learn from Related Tasks:

VS

Examples of Weak Labelers

ICML 2021 Adversarial Multiclass Learning under Weak Supervision with Performance Guarantees

Learn from Related Tasks:

Images made by Those Icons (wheel, siren), fistudio (ambulance), Freepik (truck) from flaticon.com

Contribution

ICML 2021 Adversarial Multiclass Learning under Weak Supervision with

Performance Guarantees

A. Mazzetto*
C. Cousins*
D. Sam

S. Bach E. Upfal

E. Upfal

A dversarial

M ulti

Class

L earning

Contribution

ICML 2021
Adversarial Multiclass
Learning under Weak
Supervision with
Performance Guarantees

A. Mazzetto* C. Cousins* D. Sam S. Bach E. Upfal A dversarial
M ulti
C lass
L earning

- Formal framework for adversarial learning from weak labelers
- Optimization convergence guarantees for the adversarial learning
- Generalization bounds

Contribution

ICML 2021
Adversarial Multiclass
Learning under Weak
Supervision with
Performance Guarantees

A. Mazzetto*
C. Cousins*
D. Sam
S. Bach
E. Upfal

- Formal framework for adversarial learning from weak labelers
- Optimization convergence guarantees for the adversarial learning
- Generalization bounds

Relevant previous work:

- A general framework for adversarial label learning. Arachie et al. JMLR 2021.
- ② Optimal binary classifier aggregation for general losses. Balsubramani et al. NeurIPS 2016.

ICML 2021
Adversarial Multiclass
Learning under Weak
Supervision with
Performance Guarantees

A. Mazzetto*
C. Cousins*
D. Sam
S. Bach
E. Upfal

Labeling Space (of the unlabeled data) X_U : $\{Y : Y \text{ is a labeling of } X_U\}$

ICML 2021
Adversarial Multiclass
Learning under Weak
Supervision with
Performance Guarantees

A. Mazzetto*
C. Cousins*
D. Sam
S. Bach
E. Upfal

Labeling Space (of the unlabeled data) X_U : $\{Y : Y \text{ is a labeling of } X_U\}$

Weak-Labeler ϕ_1 Risk Constraint: \hat{R} isk $(\phi_1; \mathbf{X}_U, \mathbf{Y}) \approx \hat{R}$ isk $(\phi_1; \mathbf{X}_L, \mathbf{Y}_L)$

ICML 2021
Adversarial Multiclass
Learning under Weak
Supervision with
Performance Guarantees

A. Mazzetto*
C. Cousins*
D. Sam
S. Bach
E. Upfal
s.cousins@brown.ed

Labeling Space (of the unlabeled data) X_U : $\{Y : Y \text{ is a labeling of } X_U\}$

Weak-Labeler ϕ_1 Risk Constraint: \hat{R} isk $(\phi_1; \mathbf{X}_U, \mathbf{Y}) \approx \hat{R}$ isk $(\phi_1; \mathbf{X}_L, \mathbf{Y}_L)$

Weak-Labeler ϕ_2 Risk Constraint: \hat{R} isk $(\phi_2; \mathbf{X}_U, \mathbf{Y}) \approx \hat{R}$ isk $(\phi_2; \mathbf{X}_L, \mathbf{Y}_L)$

ICML 2021
Adversarial Multiclass
Learning under Weak
Supervision with
Performance Guarantees

A. Mazzetto*
C. Cousins*
D. Sam
S. Bach
E. Upfal
s_cousins@brown.ed

ICML 2021
Adversarial Multiclass
Learning under Weak
Supervision with
Performance Guarantees

A. Mazzetto*
C. Cousins*
D. Sam
S. Bach
E. Upfal
s_cousins@brown.ed

ICML 2021
Adversarial Multiclass
Learning under Weak
Supervision with
Performance Guarantees

A. Mazzetto* C. Cousins* D. Sam S. Bach

E. Uptal vrus cousins@brown e

- ullet Minimize: model parameters $oldsymbol{ heta}$ in model space $oldsymbol{\Theta}$
- Maximize: feasible labeling Y in the feasible set

ICML 2021
Adversarial Multiclass
Learning under Weak
Supervision with
Performance Guarantees

A. Mazzetto*
C. Cousins*
D. Sam
S. Bach
E. Upfal
s_cousins@brown.ed

- ullet Minimize: model parameters $oldsymbol{ heta}$ in model space $oldsymbol{\Theta}$
- Maximize: feasible labeling Y in the feasible set
- Feasibility: $\hat{\mathsf{R}}\mathsf{isk}(\phi_i; \mathbf{X}_U, \mathbf{Y}) \approx \hat{\mathsf{R}}\mathsf{isk}(\phi_i; \mathbf{X}_L, \mathbf{Y}_L)$ for each weak labeler ϕ_i
 - Linear constraints based on probabilistic tail bounds
 - With high probability: true \mathbf{Y}^* of \mathbf{X}_U is feasible

ICML 2021
Adversarial Multiclass
Learning under Weak
Supervision with
Performance Guarantees

A. Mazzetto* C. Cousins* D. Sam S. Bach E. Upfal s_cousins@brown.ed

- ullet Minimize: model parameters $oldsymbol{ heta}$ in model space $oldsymbol{\Theta}$
- Maximize: feasible labeling Y in the feasible set
- Feasibility: \hat{R} isk $(\phi_i; \mathbf{X}_U, \mathbf{Y}) \approx \hat{R}$ isk $(\phi_i; \mathbf{X}_L, \mathbf{Y}_L)$ for each weak labeler ϕ_i
 - Linear constraints based on probabilistic tail bounds
 - With high probability: true \mathbf{Y}^* of \mathbf{X}_U is feasible

ICML 2021
Adversarial Multiclass
Learning under Weak
Supervision with
Performance Guarantees

A. Mazzetto* C. Cousins* D. Sam S. Bach E. Upfal cyrus_cousins@brown.edu

- Minimize: model parameters θ in model space Θ
- Maximize: feasible labeling Y in the feasible set
- Feasibility: $\hat{\mathsf{R}}\mathsf{isk}(\phi_i; \mathbf{X}_U, \mathbf{Y}) \approx \hat{\mathsf{R}}\mathsf{isk}(\phi_i; \mathbf{X}_L, \mathbf{Y}_L)$ for each weak labeler ϕ_i
 - Linear constraints based on probabilistic tail bounds
 - With high probability: true \mathbf{Y}^* of \mathbf{X}_U is feasible

Optimization Guarantees

ICML 2021 Adversarial Multiclass Learning under Weak Supervision with Performance Guarantees

A. Mazzetto*
C. Cousins*
D. Sam
S. Bach
E. Upfal

Theorem

Assume that the loss function is convex and L-Lipschitz Continous w.r.t. θ . If we run $T = \Omega(L^2/\varepsilon^2)$ iterations of the subgradient method using step size $\alpha = \varepsilon/L^2$, then:

$$\underbrace{\underbrace{\text{max } \hat{\mathsf{Risk}}(h_{\tilde{\boldsymbol{\theta}}}, \boldsymbol{X}_U, \boldsymbol{Y})}_{\textit{Subgradient solution}} \leq \underbrace{\min_{\boldsymbol{\theta}} \max_{\textit{feasible } \boldsymbol{Y}} \hat{\mathsf{Risk}}(h_{\boldsymbol{\theta}}, \boldsymbol{X}_U, \boldsymbol{Y})}_{\textit{Minimax optimal solution}} + \varepsilon \ .$$

Optimization Guarantees

ICML 2021 Adversarial Multiclass Learning under Weak Supervision with Performance Guarantees

C. Cousins*
D. Sam
S. Bach
E. Upfal

Theorem

Assume that the loss function is convex and L-Lipschitz Continous w.r.t. θ . If we run $T = \Omega(L^2/\varepsilon^2)$ iterations of the subgradient method using step size $\alpha = \varepsilon/L^2$, then:

$$\underbrace{\underbrace{\text{max } \hat{\mathsf{Risk}}(h_{\tilde{\boldsymbol{\theta}}}, \boldsymbol{X}_U, \boldsymbol{Y})}_{\textit{Subgradient solution}} \leq \underbrace{\min_{\boldsymbol{\theta}} \max_{\textit{feasible } \boldsymbol{Y}} \hat{\mathsf{Risk}}(h_{\boldsymbol{\theta}}, \boldsymbol{X}_U, \boldsymbol{Y})}_{\textit{Minimax optimal solution}} + \varepsilon \ .$$

Example Applications:

- softmax with cross-entropy loss
- convex combination of weak labelers with Brier loss

ICML 2021
Adversarial Multiclass
Learning under Weak
Supervision with
Performance Guarantees

A. Mazzetto* C. Cousins* D. Sam S. Bach

E. Upfal vrus_cousins@brown.e

$$\hat{\boldsymbol{\theta}} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \operatorname*{max}_{\mathsf{feasible}} \overset{\hat{\mathsf{R}}}{\boldsymbol{\mathsf{r}}} \hat{\mathsf{R}} \mathsf{isk}(h_{\boldsymbol{\theta}}; \boldsymbol{X}_{U}, \boldsymbol{Y}) \quad \mathsf{vs} \quad \boldsymbol{\theta}^{*} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \mathsf{Risk}(h_{\boldsymbol{\theta}})$$

Assume:

- loss function codomain is [0, B]
- true labeling of the unlabeled data is feasible

$$R(h_{\hat{\boldsymbol{\theta}}}) \leq R(h_{\boldsymbol{\theta}^*})$$

ICML 2021
Adversarial Multiclass
Learning under Weak
Supervision with
Performance Guarantees

A. Mazzetto*
C. Cousins*
D. Sam
S. Bach
E. Upfal

$$\hat{\boldsymbol{\theta}} = \operatorname*{arg\,min}_{\boldsymbol{ heta} \in \boldsymbol{\Theta}} \operatorname*{max}_{\mathsf{feasible}} \overset{\hat{\mathsf{R}}}{\boldsymbol{\mathsf{v}}} \hat{\mathsf{R}} \mathsf{isk}(h_{\boldsymbol{ heta}}; \boldsymbol{\mathsf{X}}_{U}, \boldsymbol{\mathsf{Y}}) \quad \mathsf{vs} \quad \boldsymbol{ heta}^{*} = \operatorname*{arg\,min}_{\boldsymbol{ heta} \in \boldsymbol{\Theta}} \mathsf{Risk}(h_{\boldsymbol{ heta}})$$

Assume:

- loss function codomain is [0, B]
- true labeling of the unlabeled data is feasible

$$R(h_{\hat{\boldsymbol{\theta}}}) \leq R(h_{\boldsymbol{\theta}^*}) + B \cdot D_f$$

The average diameter of the feasible set geometrically quantifies the information provided by the weak labelers:

$$D_f = rac{1}{m_U} \sup_{\substack{\text{feasible} \ \mathbf{y}'' \ \mathbf{y}''}} \sum_{j=1}^{m_U} ||\mathbf{y}_j' - \mathbf{y}_j''||_1$$

ICML 2021
Adversarial Multiclass
Learning under Weak
Supervision with
Performance Guarantees

A. Mazzetto*
C. Cousins*
D. Sam
S. Bach
E. Upfal
s.cousins@brown.ed

$$\hat{\boldsymbol{\theta}} = \mathop{\arg\min}_{\boldsymbol{\theta} \in \Theta} \mathop{\max}_{\text{feasible } \mathbf{Y}} \hat{\mathsf{R}} \mathsf{isk}(h_{\boldsymbol{\theta}}; \mathbf{X}_U, \mathbf{Y}) \quad \mathsf{vs} \quad \boldsymbol{\theta}^* = \mathop{\arg\min}_{\boldsymbol{\theta} \in \Theta} \mathsf{Risk}(h_{\boldsymbol{\theta}})$$

Assume:

- loss function codomain is [0, B]
- true labeling of the unlabeled data is feasible

$$R(h_{\hat{\boldsymbol{\theta}}}) \leq R(h_{\boldsymbol{\theta}^*}) + B \cdot D_f + \sup_{\text{feasible } \boldsymbol{Y}} 4\hat{\mathbf{K}}_{m_U}(\mathcal{L}; \boldsymbol{X}_U, \boldsymbol{Y})$$

The average diameter of the feasible set geometrically quantifies the information provided by the weak labelers:

$$D_f = rac{1}{m_U} \sup_{\substack{\text{feasible} \ \mathbf{y}'' \ \mathbf{y}''}} \sum_{j=1}^{m_U} ||\mathbf{y}_j' - \mathbf{y}_j''||_1$$

ICML 2021
Adversarial Multiclass
Learning under Weak
Supervision with
Performance Guarantees

A. Mazzetto*
C. Cousins*
D. Sam
S. Bach
E. Upfal
s.cousins@brown.ed

$$\hat{\boldsymbol{\theta}} = \mathop{\arg\min}_{\boldsymbol{\theta} \in \Theta} \mathop{\max}_{\text{feasible } \mathbf{Y}} \hat{\mathsf{R}} \mathsf{isk}(h_{\boldsymbol{\theta}}; \mathbf{X}_U, \mathbf{Y}) \quad \mathsf{vs} \quad \boldsymbol{\theta}^* = \mathop{\arg\min}_{\boldsymbol{\theta} \in \Theta} \mathsf{Risk}(h_{\boldsymbol{\theta}})$$

Assume:

- loss function codomain is [0, B]
- true labeling of the unlabeled data is feasible

$$R(h_{\hat{\boldsymbol{\theta}}}) \leq R(h_{\boldsymbol{\theta}^*}) + B \cdot D_f + \sup_{\text{feasible } \boldsymbol{Y}} 4\hat{\mathbf{R}}_{m_U}(\mathcal{L}; \boldsymbol{X}_U, \boldsymbol{Y}) + O\left(B\sqrt{\frac{\ln \frac{1}{\delta}}{m_U}}\right)$$

The average diameter of the feasible set geometrically quantifies the information provided by the weak labelers:

$$D_f = rac{1}{m_U} \sup_{\substack{\text{feasible} \ \mathbf{y}', \mathbf{y}''}} \sum_{j=1}^{m_U} ||\mathbf{y}_j' - \mathbf{y}_j''||_1$$

Experiments

ICML 2021
Adversarial Multiclass
Learning under Weak
Supervision with
Performance Guarantees

A. Mazzetto* C. Cousins* D. Sam S. Bach E. Upfal rus.cousins@brown.edu

Two datasets:

- Animals with Attributes (binary classification)
- Domain Net (multiclass classification)

Figure: Our method often achieves better results than the baselines and the state-of-the-art

Check out our paper for more results and details

Conclusion

ICML 2021

Adversarial Multiclass Learning under Weak Supervision with Performance Guarantees

A. Mazzetto*

C. Cousins*

S. Bach

E. Upfal

cyrus cousins@brown ed

Thanks for your attention!