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Images made by Those Icons (wheel, siren), fjstudio (ambulance),

Freepik (truck) from flaticon.com
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Relevant previous work:
© A general framework for adversarial label learning. Arachie et al. JMLR 2021.
@ Optimal binary classifier aggregation for general losses. Balsubramani et al. NeurlPS 2016.
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Weak-Labeler ¢; Risk Constraint:
Risk(¢1; Xy, Y) ~ Risk(¢1; X, Y1)

Weak-Labeler ¢, Risk Constraint:
Risk(¢2; Xy, Y) ~ Risk(¢2; X, Y7)

Feasible Set
Intersection of all constraints

Feasible set is soft labelings
Use expected loss over label distributions
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Minimax optimization of the empirical risk Risk(hg; Xy, Y):
@ Minimize: model parameters @ in model space ®
@ Maximize: feasible labeling Y in the feasible set
o Feasibility: Risk(¢;; Xy, Y) ~ Risk(¢i; X., Y.) for each weak labeler ¢;

o Linear constraints based on probabilistic tail bounds
o With high probability: true Y* of Xy is feasible

Linear Programming

min  max Risk(hg: Xy, Y
0€©  feasible v (ho: Xu. ¥)
—~

Subgradient Steps

7/11



Optimization Guarantees

ICML 2021
Adversarial Multiclass
Learning under Weak

Supervision with
Performance Guarantees

Theorem

Assume that the loss function is convex and L-Lipschitz Continous w.r.t. 6.
If we run T = Q(L?/e?) iterations of the subgradient method using step size
a = ¢/L?, then:

max  Risk hs, Xy, Y) < min  max Risk(h ,Xu, Y)+e .
feasible Y (g, Xu, ¥) 9 feasible (g, Xu, ¥)
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Subgradient solution Minimax optimal solution
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Assume that the loss function is convex and L-Lipschitz Continous w.r.t. 6.
If we run T = Q(L?/e?) iterations of the subgradient method using step size
a = ¢/L?, then:

max  Risk hs, Xy, Y) < min  max Risk(h ,Xu, Y)+e .
feasible Y (g, Xu, ¥) 9 feasible (g, Xu, ¥)

N
Subgradient solution Minimax optimal solution

Example Applications:
@ softmax with cross-entropy loss

@ convex combination of weak labelers with Brier loss
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@ loss function codomain is [0, B]
@ true labeling of the unlabeled data is feasible

1
|n$

R(hy) < R(he) + B-Df + sup 4R, (L; Xy, Y)+ 0| B
my

feasible v

The average diameter of the feasible set geometrically quantifies the
information provided by the weak labelers:
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@ Animals with Attributes (binary classification)

e Domain Net (multiclass classification)

Animals with Attributes: dolphin v. blue whale Clipart
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Figure: Our method often achieves better results than the baselines and the
state-of-the-art

Check out our paper for more results and details
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Thanks for your attention!
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