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Abstract
Defining demographic categories for fair learn-
ing frequently requires both private informa-
tion collection at the individual level and expert
judgment in the construction of relevant cate-
gories, which is often removed from common
task data collection. In this work, we present a
new approach to empowering data owners and
model developers with the flexibility to move
toward more nuanced construction of identity
in given correlates. In particular, our contri-
butions are as follows: (1) an analysis of the
ethics and politics of imputing demographic
data: the double-bind of imputing sensitive at-
tributes, the flaws of such approaches in the-
ory, practice, and interpretation, and the techni-
cal implications of these politics; (2) a mathe-
matical and conceptual framework for analyz-
ing/understanding uncertain group identities;
and (3) a correspondingly reformulated objec-
tive and adversarial minimax training algorithm
for fair learning, with provable accuracy and
training efficiency guarantees.

1. Introduction
As machine learning techniques proliferate in more var-
ied and consequential decisions, considerations of group-
level fairness become increasingly critical. While a bur-
geoning literature (Barocas et al., 2017; Chouldechova
and Roth, 2018; Cousins, 2021; 2022; Cousins et al.,
2022; Friedler et al., 2019; Mehrabi et al., 2021) has devel-
oped to explore and satisfy various group-based fairness
objectives, by nature most such techniques require access
to relevant demographic data. However, not all datasets
may include such information, due to data collection limi-
tations or privacy concerns. Moreover, the definitions and
categories of demographics subject to fairness concerns
is complex and changing. Data schemas and collection
methods are political choices, which then can be a point of
contention and site of erasure for different identities. For

example, binary gender or sex options, whether in govern-
ment documentation or customer surveys, are tautologi-
cally limiting and erasive. This excludes a breadth of in-
tersex, non-binary, two-spirit, and gender-nonconforming
people and erases the materially different experiences
of transgender people that do identify within a binary
(Keyes, 2018). These problems are not limited to gender;
for example, many Southwest-Asian and North-African
ethnicities are counted as white, despite facing discrimi-
nation and structural barriers (Maghbouleh et al., 2022).
Delineating the intersections and spectra of identities into
discrete groups is both contextual and dynamic (Benthall
and Haynes, 2019), while also overlapping with structural
questions of data ownership, privacy, and power.

This work seeks to address these challenges. While the
relevant dimensions and specifications for fairness depend
on domain expertise, being able to project well-defined
granular data or distribution specifications defined by such
experts is an important technical step for operationaliz-
ing these considerations into learning tasks. This paper
introduces a method to create a group-labeling adversary
from auxiliary demographic data, which can be applied
to a sufficiently similar task dataset with partial, noisy, or
missing sensitive attribute information for fair training.
To do this, we calculate statistics on a small true-group-
labeled dataset, and probabilistically bound the difference
of these statistics calculated on training data. This gener-
ates a feasible set encapsulating our partial knowledge of
training group labels, within which the true training data
demographics fall with high probability.

While this framework is broad, we focus on mean statis-
tics for their ease of interpretability, well-studied and
strong ε-δ additive error tail bounds. These bounds con-
strain a linear program adversary, which finds a worst-
case demographic distribution given model parameters.
We then use this adversary to (provably and efficiently)
train a fair model via the projected subgradient method, by
optimizing model parameters for Rawlsian fairness (i.e.,
minimizing worst-case risk over all protected groups)
against adversarially selected feasible group labelings
over the task dataset.



1.1. Related Work

Fair Machine Learning and Minimax Learning Fair
machine learning includes a plethora of different defini-
tions (Mehrabi et al., 2021), criteria (Corbett-Davies and
Goel, 2018), and approaches. Formulation of fairness as a
minimax problem (Abernethy et al., 2020; Cousins, 2021;
2022; Diana et al., 2021; Mohri et al., 2019) over per-
group risk (expected loss) have become common. These
methods often dovetail nicely with interpretations of John
Rawls’ political philosophy — specifically, the Difference
Principle (Rawls, 2001), to define a notion of Rawlsian
Maximin (or minimax) fairness. This is mathematically
equivalent to the setting of Group Distributionally Ro-
bust Optimization (Group DRO) (Hu et al., 2018; Oren
et al., 2019; Sagawa et al., 2019), which considers differ-
ent protected groups as a family of distributions, where
minimizing worst-case empriical risk can handle spurious
correlations and under- or over-parametrized settings. As
Rawlsian fairness can provide a convex objective (exact
formulation outlined in (4) of section 4.1), drawing upon
minimax optimization techniques offers computational
feasibility guarantees.

Minimax Learning for Uncertainty Minimax tech-
niques are also used to navigate uncertainty in fairness-
unrelated domains. The ALL framework (Arachie and
Huang, 2019; 2021), and in particular the setup of
Mazzetto et al. (2021) is quite similar to ours, except
their uncertainty is over unknown labels in classification
(rather than unknown groups), and they simply seek to
minimize the unweighted risk over the entire population
(rather than a Rawlsian objective). In particular, they have
the empirical objective

θ̃ = argmin
θ

max
y∈Y

m∑
i=1

ℓ(hθ(xi),yi) . (1)

We note that, despite their surface similarity, significant
novel technical hurdles arise in this work. In particu-
lar, observe that (1) has convex-concave structure in θ
and y, making it directly amenable to standard minimax
optimization techniques. In contrast, due to the Rawl-
sian objective not being concave in the unknown group
identities z, the same does not happen in our work, thus
complicating the construction of the adversary.

Fairness Without Demographics These techniques
converge when approaching fair learning without access
to demographic data. Identifying fairness disparities re-
quires some source of information to infer possible rele-
vant groups. Hashimoto et al. (2018) uses a form of DRO
for fair learning over unknown attributes in repeated, dy-
namic decision-making with fairness disparities being
amplified over time. Adversarially Reweighted Learning

(ARL) (Lahoti et al., 2020), in contrast, draws upon a no-
tion of computational identifiability to infer demographic
groups based on within-data covariance.

However, identifying potential groups is not perfect; by
construction, these techniques may fall prey to a tendency
to focus on borderline examples, at a cost to efficacy
across defined, interpretable groups of concern. Simi-
lar to both of these techniques, we focus our efforts on
a Rawlsian definition of fairness, but instead explicitly
define and model protected groups of interest to avoid
this problem. Our work differs in setting by incorpo-
rating not only auxiliary data and a priori knowledge
about discrimination, but also reframing training from
problems of group estimation to bounded group possibil-
ities. While techniques utilizing additional data or prior
information can be quite common, they often fall into a
separate framework — which we believe our work strad-
dles the boundary between.

Auxiliary Data and Proxies The use of auxiliary data
in many other challenging machine learning domains
is well-established; approaches in semi-supervised, self-
supervised, zero-shot, and other paradigms of learning
with limited labeled data often leverage access to other
data sources — sometimes lacking labels or drawn from a
different distribution. In the realm of fairness, other work
has explored utilizing auxiliary data to both assess fair-
ness disparities and inform training, with some caveats.

A common approach is to estimate fairness-relevant in-
formation. Kallus et al. (2022) use the notion of auxiliary
data to produce a set of possible fairness-related values
consistent with training data — finding the impossibility
of calculating exact values of fairness disaprities. Chen
et al. (2019) dub the usage of models that enable the im-
putation of demographic data, primarily for the purposes
of fairness assessment, as proxy models. The Bayesian
Improved Surname Geocoding model (Elliott et al., 2009)
uses information such as name and geographic location,
which regulators have applied with real-world impacts
(Bureau, 2014). Similarly, developing proxy groups based
on correlates (Gupta et al., 2018) is another approach built
toward fair model training. More recently, Diana et al.
(2022) use a notion of multiaccuracy to define a robust
proxy estimate for a given dataset, which downstream
learners can train fairly over. These techniques have their
own room for improvement; Chen et al. (2019) note that
most proxy estimates have statistical bias, Diana et al.
(2022) note some challenges with efficiently learnable es-
timates, and Gupta et al. (2018) advise caution in selecting
proxy variables.
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2. Considerations Around Imputation
Motivations for Imputation The driving motivation
behind this approach is understandably nuanced in scope,
degree, and application. The contexts around data col-
lection, imputation, and ownership are varied. We ac-
knowledge that there are circumstances where making
assumptions and estimations are acceptable, and also that
refusing to work with particular demographic data what-
soever may be well-justified by in context. In some cases,
imputation is a harm-minimizing choice. The US Census
Bureau argued in Utah v. Evans that refusing to impute
household size data would be equivalent to imputing a de-
generate value of 0 — assuming empty homes (Cantwell
et al., 2004). In the US Census, this means systematic
undercounting by geographic region. Within machine
learning, ignoring fairness considerations when demo-
graphic labels are missing may not only be an ineffective
approach of fairness through unawareness, but also fre-
quently a de facto assumption of dominant hegemonic
identities within the relevant population.

Individual Predictions and Ecological Fallacy At the
same time, there are discomforting flaws about imputation
at its most aggressive — particularly when predicting
entirely new values. A conventional model, however
grounded in true statistical relationship, ultimately assigns
predictions and labels to individuals — particularly when
built on historically injustices — in what some would
deem algorithmic stereotyping. By construction, inferring
predictions about individuals due to aggregate statistics
about groups they belong to leads to aggregation bias;
combined with confounding causal factors, this becomes
the ecological fallacy (Freedman, 1999). Not everyone
living in an affluent majority-white suburb is white and
wealthy, and certainly not every person with a commonly
gendered legal name lives and identifies the same way
— and such underlying mechanisms are certainly more
complex. By their nature, these model predictions encode
stereotypes.

Implications for Structural Inequality Benjamin
(2019) critiques the use of demographic prediction, albeit
in the realm of advertising segmentation. Her perspective
contextualizes these algorithms in histories of discrimina-
tion: “By fixing group identities as stable features of the
social landscape,” she argues, “[d]ifference is... now codi-
fied beyond the law, in the digital structures of everyday
life.” While not all applications of proxy models neces-
sarily exploit race and ethnicity for the sake of profit, they
are nonetheless built on — and are effective because of
— historical injustices. Understanding predictive models
as a mode of knowledge (re)production means that every
application replicates the act of racialization. Incorporat-

ing a critical race methodology of fairness (Hanna et al.,
2020) means situating the algorithmic act of classifica-
tion in the racial project of (re)constructing race upon
marginalized people. Anti-racism must critically navi-
gate constructions of race without reinforcing them, and
our work seeks to accomplish this by utilizing a flexible
concept of race to prevent discrimination, rather than to
provide differential treatment.

In the LGBTQ community, these problems are readily
apparent in the case of trans-exclusive automatic gender
recognition (Keyes, 2018), which is almost always built
upon a binary. While most discourse focuses on pre-
diction with direct physiological traits, especially facial
recognition, the gendered nature of everything from occu-
pation to marriage status and name superimpose historical
norms upon us. Beyond the magnified privacy concerns
for marginalized individuals (Hamidi et al., 2018), any
attempt to promote fairness based on such proxy meth-
ods is built on foundations that already exclude the most
marginalized — often to the point of literal poor model
performance at identity intersections (Buolamwini and
Gebru, 2018). This is particularly problematic for the
notion of Rawlsian fairness; the least well-off are quite
literally erased from consideration to begin with. Imputed
data that misgenders transgender women will lead to mod-
els that present only an incorrect and superficial notion of
fairness — a mechanical TERF, if you will. Those on the
structural margins, as articulated in Black feminist theory
(hooks, 2000), often end up at statistical margins.

Refusing Data Collection We take care to distinguish
this problem setting of poor or impractical data collection
from strategic collective or individual choices to not be
studied and have their data collected. Intentional, politi-
cally motivated choices to refuse research serve as a way
of claiming sovereignty over particular forms or pieces
of knowledge, as documented and argued by Tuck and
Yang (2014). When situated in a decolonial agenda, this
serves to draw boundaries against research as an imperial
project and highlight invisibilized limitations of colonial
academia.

Similarly, even when data may be collected, data
sovereignty, governance, and control are necessary consid-
erations before seeking out auxiliary data — or predicting
data over communities that have refused to be categorized.
Even beyond individual rights to privacy and refusal, the
collective impact on and control over knowledge held by
marginalized communities outweighs hegemonic notions
of fairness enforced from within the imperial metropole.
For example, te reo Māori data collected by Te Hiku Me-
dia (2018) is used to develop language models within
their community, motivating and contextualizing their —
and their communities’ — refusal to share their language
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data in rights of ownership, leadership, and control. Our
work ought not justify colonial acquisition of data with-
out both informed individual consent and a collectively
accountable distribution of power.

Navigating Needs However, there remain plenty of
cases where a lack of data is both unintentional — or
not refused on specifically so motivated grounds — and
harmful to fairness. By far is it more likely that most
binary gender or sex categories on demographic surveys
come from a desire for convenience in data cleaning (or,
more bluntly, erasure of TGNC and intersex people) than
more complex, community-engaged motivations. Our
goal then is to satisfy the motivating shortfalls behind
imputation and proxy models without falling into their
pitfalls in both theory and practice. We believe our pro-
posed technique answers the above challenges; we avoid
aggregation bias and its compounding effects both on
defining worst-case fairness and reproducing structural
inequality. Moreover, we weaken the data access nec-
essary to seek fairness, allowing for the exportation a
fairness-defining adversary derived from a private dataset
without handing over individual records. In other words,
a trusted data owner need only provide group-level mean
statistics and relevant calculated bounds to implement a
fair training adversary for a given task.

3. Approach
In this section, we outline the high-level framework of
our approach, formally defining our problem setting in
section 3.1, the notion of statistically constrained possi-
ble group labels in section 3.2, and the advantages and
practical interpretation of this technique in sections 3.3
and 3.4.

3.1. Preliminaries

In conventional group-based fair learning, with access
to group membership data at training time, our data
points are triplets (x, y, z) ∈ (X × Y × Z), where
Z .

= {1, 2, . . . , g} is a (WLOG finite) space of g pro-
tected groups. Instead, in this paper, we have a task-
specific dataset of my training data points in features xy

and labels y, with limited knowledge of memberships in
Z . Additionally, we have an auxiliary demographically
rich dataset xz and group membership data z′ of size mz

points. Our approach uses this auxiliary data to construct
a feasible set Z of possible z memberships across all data
points, which contains the true distribution z∗ across the
task dataset xy as well as the worst-case (with respect
to a fairness metric) distribution of group memberships
given model parameters θ.

For the sake of computational tractability, we relax Z

No Information Partial Information Full Information
Any z is feasible Some z are feasible Only z∗ is feasible

Z = △m
g z∗ ∈ Z ⊂ △m

g Z = {z∗}

Unconstrained
DRO

This work, η-DRO
ARL

Group DRO
Minimax Fair Learning
Egalitarian Malfare Min.

Table 1. Comparison of various information settings in group-
fair learning.

z∗
(unknown)

Unconstrained Group IDs
Z = △m

g

=
{
z ∈ [0, 1]m×g

∣∣ ∀i: ∥∥zi,·∥∥1= 1
}

Constraint 2

Constraint 1

Feasible Set Z
Intersection of all constraints

Figure 1. A feasible set Z of group labelings is generated by
the intersection of multiple constraints on the simplicial space
of possible per-instance group labelings. Constraint one is
bidirectional, constraint two is unidirectional, and their in-
tersection forms the feasible set Z, which contains the true
z∗ (with high probability, assuming these are valid statistical
constraints, as described in section 4.4).

such that Z is a convex set, i.e., we work with the convex
relaxation space Zm

⋄ for any m data points. In particular,
Zm

⋄ is a simplicial product space, thus for each z ∈ Z and
index i ∈ 1, . . . ,m, the values zi,· — like discrete one-
hots — sum to 1. Each z ∈ Z is a right-stochastic matrix
z ∈ [0, 1]m×g, in the simplex △m

g , such that zi,· (row
i) is thus a distribution (weighting) over groups. While
this could potentially interpreted as a sense of partial
membership, we note that the nature of such concepts for
many relevant axes of identity are much more complex in
dimension, scope, and dynamic than captured here.

Assuming that xz and xy are drawn from the same distri-
bution, we can establish this feasible set using statistical
tail bounds on a set of the group-level statistics of our
training data xy. We restrict our analysis in section 3.2
and section 4.4 to mean statistics but this is generalizable
to other statistics, e.g., variance or CDF statistics, given
the appropriate tail bounds.

3.2. Constraining the Feasible Set

We now discuss the statistical mechanisms for deriving
constraints on the feasible set. Similar to Kallus et al.
(2022), we utilize statistical knowledge from the auxil-
iary data distribution to bound the range on an unknown
quantity. In this case, however, instead of a given dispar-
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ity measure, we bound the space of demographic labels
directly, much like how (Mazzetto et al., 2021) constrain
feasible labelings. As emphasized, the crux of this tech-
nique depends on the definition of the feasible set Z
through a set of statistics U . Our analysis and implemen-
tation focus on mean statistics, where we have k functions
u ∈ U on individual data points and their corresponding
mean functions ū(x, z) = 1

m

∑m
i=1 u(xi, zi). As some

basic examples, this might be the mean proportion of
a given demographic attribute “60% of this population
self-identifies as white,” or a conditional or joint mean
(“70% of people in this income bracket are men,” or “5%
of this entire population is both queer and unmarried”).
We focus on statistics relevant to our protected groups —
capturing the joint distribution(s) across z′ and xz .

For each u, the sample mean over the auxiliary dataset
ū(xz, z

′) allows us to estimate the true mean µ =
Ex,z[u(x, z)] of the underlying distribution, using tail
bounds in the same spirit as a confidence interval (elabo-
rated in detail in section 3.3). This, in turn, can — with
high probability — bound the value of the empirical mean
ū(xy, z

∗) on another sample (namely, the task dataset),
producing constraints. We describe specific bounds and
techniques in section 4.4.

We cannot calculate ū(xy, z
∗) on the task dataset without

knowing z∗. However, if it is confined within some range
(i.e., must be within ε of µ) by using the bounds described
above, it becomes possible to work backwards and limit
the domain of possible z ∈ Z through constraints on the
range ū(xy, z) ∈ [µi − ε, µi + ε] for all u ∈ U , forming
the basis of our adversary in section 4.2.

3.3. Philosophical Interpretations

Our technique differs from imputation-based methods. In-
stead of making statistical predictions on a singular most
likely distribution of protected attribute labels, we instead
bound a statistically feasible set of possible distributions.
In an analogy to regression analysis, instead of interpret-
ing a singular identity prediction as a mean conditioned
on covariates (e.g., “70% chance that any given person
who has changed their name is transgender”), our feasible
set is instead a confidence interval (“with high proba-
bility, 6–8 of these 10 people are in some way gender
nonconforming”). This explicitly avoids the ecological
fallacy outlined earlier; we avoid applying stereotypes to
individuals, as we work only with statistics across multi-
ple people. This not only guarantees direct transparency
with respect to grounding the demographics used for fair
training, but also provides a less presumptive approach in
interpreting a chosen z.

3.4. Example

To demonstrate this interpretation, we present a simpli-
fied example. For example, say that 7% of our target
population self-identifies as LGBTQ in our auxiliary data,
as per Jones (2022). Even if we have little or no infor-
mation about LGBTQ identity in our training data, we
can bound the probable proportion of LGBTQ individuals
in our task dataset within some confidence interval (say,
between 6% and 8% with probability at least 95%). This
rules out statistically improbable distributions of demo-
graphics (e.g., the unlikely case that every person in the
task sample is gay). This single example alone is insuf-
ficient to ground fair training, but the addition of more
statistics further constraints the feasible set of distribu-
tions. If according to our trusted data, LGBTQ people are
roughly evenly distributed by city district, our adversary is
barred from proposing a world where every queer person
in Philadelphia lives exclusively in the Gayborhood; sim-
ilarly, if demographic trends show as such, it can reject
distributions that erase geographic concentrations around
queer communities. As the feasible set of possible worlds
shrinks, the power of the adversary wanes and it becomes
possible for a model to minimize risk for a group with
respect to any distribution within the bounds, allowing a
fair training regime.

4. Model
This section describes the choices we use to apply and
implement our framework to a given problem, defining a
convex learning objective in section 4.1, a tractable adver-
sary applying the feasible set in section 4.2, convergence
guarantees in section 4.3, and statistical techniques for
deriving effective constraints in section 4.4.

4.1. Objective

We adapt our notion of fairness to this problem space;
similarly to ARL and DRO, we focus on Rawlsian Min-
Max fairness and utilize an adversarial approach to solve
the optimization problem. While many — sometimes
mutually exclusive — definitions of fairness exist, an
optimally fair hypothesis θ∗ is here defined as

θ∗ = argmin
θ∈Θ

max
j∈Z

E
x,y

[ℓ(hθ(x), y)|Z = j] (2)

for a loss function ℓ. Working in our continuous relaxation
ofZ means that calculating the empirical risk conditioned
on each protected group is less straightforward. Instead
of simply calculating the average empirical risk on a parti-
tioned subset of the dataset for each group, we generalize
this idea to a weighting of the empirical risk calculation
by the fractional membership for each data point. On a
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sample, this gives

E[ℓ(hθ(x), y)|Z = j] ≈
∑m

i=1 zi,jℓ
(
hθ(xi),yi

)∑m
i=1 zi,j

(3)

for each j in Z . This is the conditional empirical risk for
each group. Note that, with discrete z, as with one-hot
vectors, this cleanly reduces to the conventional condi-
tional empirical risk.

The empirical Rawlsian risk minimizer

θ̃z∗ = argmin
θ∈Θ

max
j∈Z

∑m
i=1 z

∗
i,jℓ

(
hθ(xi),yi

)∑m
i=1 z

∗
i,j

(4)

serves as practical approximation to θ∗ in the same vein
as (3). As we do not know the ground-truth group mem-
berships z∗, we instead seek the θ̃Z that minimizes its
worst statistically-feasible Rawlsian empirical risk. This
comes through an additional maximization term over the
feasible set Z, which incorporates the varying restrictions
on z, i.e.,

θ̃Z = argmin
θ∈Θ

max
z∈Z

max
j∈Z

∑m
i=1 zi,jℓ

(
hθ(xi),yi

)∑m
i=1 zi,j

. (5)

Each of these solution concepts are theoretical constructs
and, like most solutions to minimization problems, gen-
erally intractable to compute exactly. In section 4.3
we provide a training algorithm that defines a θ̂ that ε-
approximates the objective θ̃Z .

4.2. Defining the Adversary

Formulation as Linear Program Put plainly, our ad-
versary calculates the maximum terms of (5) for a given
value of θ, i.e.,

max
z∈Z

max
j∈Z

∑m
i=1 zi,jℓ

(
hθ(xi),yi

)∑m
i=1 zi,j

(6)

=max
j∈Z

max
z∈Z

∑m
i=1 zi,jℓ

(
hθ(xi),yi

)∑m
i=1 zi,j

. (7)

Note that while both the numerator and denominator of
this term are linear in z, their ratio is neither concave
nor convex in z. While, in the general case, maximiza-
tion over non-concave functions is difficult, (6) can be
made tractable. While Z is infinite, making enumeration
impossible, Z is not, so commuting (6) to (7) allows us
to only solve a small number of g instances of the inner
maximization problem.

Now, all that remains is to solve the inner maximization
problem in (7). Let the numerator, the weighted empirical
risk

∑m
i=1 zi,jℓ

(
hθ(xi),yi

)
, be L(j)(z), and the denom-

inator
∑m

i=1 zi,j be W (j)(z) for any j ∈ Z . For a given

θ, let R(j)(θ,z) = L(j)

W (j) for a particular group j. We
assign partial group labels to data point such that it maxi-
mizes the empirical risk of a given individual group. In
other words, it describes the worst-case group member-
ship for fairness with respect to the minimax criterion
within the feasible set. This can be constructed as a max-
imization over a set of optimization problems. Each of
the mg variables represents zi,j for some i = 1, ...,m
and j ∈ Z , with the matrix of constraints C constructed
from both statistics in U and m simplex restrictions (i.e.,
variables for each i must sum to 1). Let z⃗ be the vector-
form unrolling of z, and b⃗ likewise a vector of bounds
corresponding to rows in C.

Note that, for each j ∈ Z , this is a linear fractional
program

max
L(j)(z)

W (j)(z)
: C z⃗ ⪯ b⃗ , (8)

which can be transformed into a standard linear program

maxL(j)(v) : Cv⃗ ⪯ b⃗t,W (j)(v) = 1, t ≥ 0 , (9)

with v = z
W (j)(z)

, and additional variable t = 1
W (j)(z)

,
using the Charnes-Cooper (1962) transformation. We
calculate this for each group j ∈ Z , storing values of
zj = v(j)

t for each j, as well as the objective value
R(j)(θ,z(j)). The output of our adversary is then the
maximum (and corresponding z(j)) across these g linear
programs,

W

(θ,z) = maxj∈Z R(j)(θ,z(j)) — the Rawl-
sian fairness empirical risk for any given weights θ and
their corresponding worst-case demographic distribution.
Note that each of these linear programs can be efficiently
solved in polynomial time (Jiang et al., 2021; Karmarkar,
1984), meaning our overall adversary is likewise tractable.

Efficiency Concerns To minimize computational costs,
we note that individual small gradient updates will change
little in each component linear program. Therefore, the
prior solution serves as a warm-start initialization point
for solving methods. Additionally, remembering prior
solutions as bounds can help avoid solving every linear
program every time. If the loss function ℓ is λ-Lipschitz,
then we can bound the increase in the conditional loss for
each group, allowing us to determine that a group’s risk
is not maximal without solving the corresponding linear
program.

4.3. Fair Learning Given a Feasible Set

We provide a polynomial-time training procedure algo-
rithm 1, interweaving adversary computations between
each gradient step the projected subgradient method of
Shor (2012) to get sets of group label weightings.

Practically speaking, gradient descent will apply to most
situations while offering faster calculation. If a function
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is convex, at least one subgradient exists for each point
within the domain; where the function is differentiable,
the gradient is a unique subgradient. Within this maxi-
mization problem, there will only be multiple subgradi-
ents at non-differentiable points — where multiple terms
in the maximization, and therefore, worst-case empirical
risk for multiple groups, are equal. This means our model
for any task gradient descent-compatible when agnostic
to fairness can be initially more simplistically trained to
get a warm-start set of parameters θ(0).

Even without assuming a practical warm start, if our sub-
gradient calculations and updates are efficient, training
a learning model with convex loss function to optimize
Rawlsian fairness is achievable in polynomial time.
Theorem 4.1 (Efficient Adversarial Training). Suppose
the convex parameter set Θ ⊂ Rd is bounded s.t. (Eu-
clidean) Diam2(Θ) ≤ R and ProjΘ(q⃗) ∀ q⃗ ∈ Rd is com-
putable in Poly(d) time. Suppose also that the hypothesis
hθ(x) and the (sub)gradient ∇θhθ(x) can be evaluated
in Poly(d) time, and furthermore that the loss function
ℓ : Y ′ × Y 7→ R s.t. ∀x ∈ X , y ∈ Y : θ 7→ ℓ(hθ(x), y)
is convex and λ-Lipschitz continuous. Finally, suppose g
groups, m training data points, convex feasible set poly-
tope Z ⊆ △m

g ⊂ [0, 1]m×g defined by c linear con-
straints, and additive error tolerance ϵ > 0. Then algo-
rithm 1 terminates in Poly(g,m, d, c, R, λ, 1

ε ) time and
returns a θ̂ ∈ Θ s.t.

max
z∈Z

W

(θ̂,z)−max
z∈Z

W

(θ̃Z , z) ≤ ε .

Proof. Our Rawlsian fairness objective

argmin
θ∈Θ

max
z∈Z

max
j∈Z

∑m
i=1 zi,jℓ

(
hθ(xi),yi

)∑m
i=1 zi,j

is a maximum over conditional empirical risk. While
this conditional is not concave in z, the relevant composi-
tion remains convex in θ. This objective is then likewise
convex — allowing for application of convex optimiza-
tion techniques. However, as the inner term uses is a
maximum over disjoint terms, this objective is not dif-
ferentiable everywhere, and so gradient-based methods
(e.g., stochastic gradient descent) theoretically do not ap-
ply. Nonetheless, convexity guarantees the existence of
a subgradient, which generalizes the gradient for convex
functions. Shor (2012), assuming only a convex Lipschitz-
continuous objective function on a bounded domain f(θ),
proves that repeated weight updates from of projected
subgradient yields a set of weights θ̂ that evaluate the ob-
jective with at most additive ε error from that of minimum
θ̃Z . Concretely, given a choice of step size α and number
of iterations T ,

f(θ̂)− f(θ̃Z) ≤
R2 + λ2α2T

2αT
. (10)

Consequently, applying the projected subgradient method
in algorithm 1 yields an ε-optimal solution.

We now bound the time complexity of algorithm 1. From
the error guarantee Shor (2012) provides for the projected
subgradient method, it follows that additive error ε can be
achieved with choice of step size α = ε

λ2 and iterations
T = R2λ2

ε2 (line 4). Calculating

W

(θ,z) and the subgra-
dient take Poly(g,m, d) time with polynomial evaluation
of hθ(xi) (line 9), and projected subgradient updates take
Poly(d) time (line 10). Given a feasible set Z in the form
of a convex H-polytope, the adversarial maximization
(line 11) essentially consists of solving g linear programs
with O(mg) variables and O(m+ c) constraints (see sec-
tion 4.2) and is thus solvable in Poly(g,m, c) time, as
each linear program takes worst-case polynomial time.
Then, combined with the O(R

2λ2

ϵ2 ) number of training
steps, the total number of computational steps taken by
algorithm 1 is

O(R
2λ2

ϵ2 ) ·Poly(g,m, d, c) ⊂ Poly(g,m, d, c, R, λ, 1
ε ) .

These guarantees in error and computability provide prac-
tical value. Without correctness guarantees, a fair learn-
ing model may be unreliable on highly consequential or
biased tasks. As a technique born of concern for under-
studied or highly private populations, the value of this
guarantee compounds where downstream or post-hoc fair-
ness assessment may be less feasible. Similarly, error
bounds articulate a defined tolerance to replace the unreli-
ability of imputation-based tools, which have magnified
risk for those multiply marginalized. To promise fairness,
error at every junction must be limited.

The modular nature of our statistical bounds and auxiliary
data sources situates our work in contexts of grassroots
data collection and community-engaged algorithm deploy-
ment. We “democratize” fair learning for easy implemen-
tation by keeping computational requirements accessible.
Without polynomial-time tractability, the computing re-
source requirements for implementation would prevent
practical application by many relevant under-resourced
and marginalized stakeholders.

4.4. Calculating Practical Constraints

Tight bounds are critical to the efficacy of our technique.
Assuming that data points are drawn independently from
the same distribution, the absolute difference of an empir-
ically calculated statistic from its expectation is bounded
by additive error ε with probability at least 1 − δ. Ap-
plying this over many statistics, we can bound how much
statistics from a small, well-collected dataset with group
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Algorithm 1 Fair Adversarial Training

1: procedure FAIRTRAINING(ℓ,xy,y,Θ, R, θ(0),Z, λ, ε)→ θ̂
2: input: loss function ℓ ∈ Y ′ × Y → R, data points xy , labels y, parameter space Θ, parameter space Euclidean

diameter R, initial warm-start model parameters θ(0), constrained feasible set Z, loss function Lipschitz bound λ,
chosen error bound ε

3: output: worst-group empirical risk minimizing hypothesis θ̂
4: α← ε

λ2 ; T ← R2λ2

ε2 ▷ calculate sufficient step size α, number of iterations T

5:

W

(θ,z)
.
= max

j∈Z

∑my

i=1 zi,jℓ
(
hθ(xi),yi

)∑my

i=1 zi,j
▷ define Rawlsian objective of hθ for group labeling z

6: z(0) ← argmax
z∈Z

W

(θ(0), z) ▷ adversarially choose groups labelings z(0) against θ(0)

7: θ̂ ← θ(0);

W

min ←

W

(θ(0), z(0)) ▷ initialize running best solution to initial solution
8: for t ∈ 1, ..., T do
9: g(θ(t−1))← ∇θ

W

(θ(t−1), z(t−1)) ▷ subgradient calculation
10: θ(t) ← argmin

θ∈Θ

∥∥∥θ − (
θ(t−1) − αg(θ(t−1))

)∥∥∥
2

▷ subgradient update, projected onto domain Θ

11: z(t) ← argmax
z∈Z

W

(θ(t), z) ▷ adversary, as described in section 4.2

12: if

W

(θ(t), z(t)) <

W

min then
13: θ̂ ← θ(t) ▷ update running best parameters
14: end if
15: end for
16: return θ̂
17: end procedure

memberships predict the true distributional value, and in
turn how much the unlabeled dataset can feasibly differ.
Through this, we establish the feasible set of possible
group labels Z.

We create a set U of statistics calculated over z′ and xz ,
focusing on covariates likely implicated in bias (with the
help of expert knowledge). For example, a mean statis-
tic may be the fraction of data points that are in both a
certain income bracket and protected group (e.g., race).
Calculating ūk(xz, z

′) gives us a confidence interval on
the true distributional expectation µk. In turn, we can
guarantee with some probability δ a limit on the absolute
deviation of the distributional expectation µk from em-
pirical average statistic over the task data, ūk(xy, z

∗), as
some ε. Combining these, we have probability bounds in
the form

P
(∣∣ū(xz, z

′)− ū(xy, z
∗)
∣∣ > ε

)
≤ δ , (11)

and therefore when defining our adversary,

ū(xz, z
′)− ε ≤ ū(xy, z) ≤ ū(xz, z

′) + ε (12)

for all z ∈ Z.

In the simplest approach, we create unconditional expec-
tation constraints for fixed probability threshold δ and
some ε dependent on δ and other factors. In conventional
simple uniform convergence bounds, we use Hoeffding’s

(1963) inequality for each u, and sum failure probabilities
with the union bound. However, especially if we have a
small m, as may be the case for auxiliary dataset size mz ,
this bound is relatively loose. Hoeffding bounds are not
sharp for low-variance functions, and the union bound is
likewise weak for correlated variables (Mazzetto et al.,
2021). If we calculate the empirical Rademacher aver-
age for the family of statistics U over the data, we get a
tighter bound. We can further strengthen this by incorpo-
rating the wimpy variance, supu∈U

1
m

∑
u(xi, zi)

2, as
well as minimizing this variance by using the empirical
centralization of the statistic function; for computational
efficiency, this empirically centralized Rademacher av-
erage can also be Monte-Carlo estimated (Cousins and
Riondato, 2020).

These sharp bounds provide an initial ε1 and δ1 dependent
only on the auxiliary data, and have a direct interpretation
as the bounds on the true population mean µ. In con-
trast, while the distribution of sensitive attribute variables
across the task dataset may be unknown, we require no ad-
ditional assumptions on the size of the task dataset my as
the uniform convergence bound for PAC learnability relies
on the same number — the error ε2 and associated proba-
bility δ2 on the feasible set here is bounded by the same
variables and at the same rate as the overall learnability of
the problem. The error bound ε, then, is composed of two
separate components ε1, ε2, one of which is parametrized
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by the auxiliary data and the other by the task dataset.
This allows for the modularized approach of exporting an
adversary without the full auxiliary data, with the individ-
ual ε2 portion of the bound depending on a particular task
dataset.

5. Discussion
Our work establishes a new technique that recasts the no-
tion of fairness over uncertainty. Motivated by arguments
from Black feminist authors and theories of decoloniza-
tion, we move beyond the flawed basis of imputation and
shift power toward holders of sensitive data. Beyond the
advantages of this conceptual framework, including in-
creased transparency in data interpretation, our implemen-
tation of linear program- and subgradient-based adversar-
ial training provides provable performance and efficiency
guarantees. We maximize the efficacy of existing data by
allowing the adversary’s constraints to come from a va-
riety of statistical sources, including sophisticated, sharp
bounds.

Our work holds plenty of room for further development
and requires both experimental validation as well as fur-
ther development in theoretical proofs and connections —
bounds on other sources of error, efficient verification of
warm-start efficacy, and minimal sizes for group represen-
tation. We aim to explore definitive privacy guarantees
for data owners and adversary producers, both for the
auxiliary dataset, as well as for the implications of pro-
jecting adversarial possibilities onto the task dataset. For
example, investigating whether adversary constraints and
expected statistic values can be made differentially pri-
vate, to protect from auxiliary database reconstruction
attacks, would offer a calculable privacy guarantee.

Nonetheless, our work so far articulates both statistical
and theoretical flaws with preexisting proxy methods and
other approaches to fairness without direct demographic
data. Our technique explicitly addresses these to repair
a meaningful notion of Rawlsian fairness, avoid biases
within protected groups, and structurally give collectors
of sensitive demographic data more range to provide
fairness-applicable information to individual task devel-
opers, without compromising values of privacy or critical
politics.
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