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The problem

(X,Y)~I, XeD,YeR

Given (X1,Y1),..., (X¢, Ye) 91,

Regression: estimate Ep;[}" | X|

Conditional Density Estimation (CDE): estimate the conditional PDF (CD) f(y | X)
(Pr(a <Y <b|X) = [} f(y | X)dy)

CDE is more nuanced, informative:

detect skewness & multimodality, compute quantiles, ...



Our contribution

A parametric variant of decision trees and random forests for CDE.

KEY PROPERTIES:
Fast to train, as it uses cross-entropy as impurity criterion
Fast to query, as it stores sufficient statistics at the leaves to compute the CD.

Small(er) storage requirements (than previous work)



Our contribution

A parametric variant of decision trees and random forests for CDE.

KEY PROPERTIES:
Fast to train, as it uses cross-entropy as impurity criterion
Fast to query, as it stores sufficient statistics at the leaves to compute the CD.

Small(er) storage requirements (than previous work)

LIMITATION: (for now)

Only estimate CDs from parametric families of distributions with sufficient statistics



Random forests

Tree 1 @ Tree 2 @

|m11| |m12| |m13| |m14| |m21| |m22| |m23| |m24|

Split the feature space in hyperrectangles
Diversity: Each tree 7} is built using a resampled S; from training set S.

m;;: average of ¥ values of subset of & mapped to leaf j of tree i.



Random forests

Tree 1 @ Tree 2 @

|m11| |m12| |m13| |m14| |m21| |m22| |m23| |m24|

Split the feature space in hyperrectangles
Diversity: Each tree 7} is built using a resampled S; from training set S.
m;;: average of ¥ values of subset of & mapped to leaf j of tree i.

Prediction for x € D = R: % Zf LM by ()
0;(x) = leaf of 7; that x is mapped to.



Why random forests?

Avoid decision tree tendency to overfit (or have high variance)
By having multiple trees, the variance is controlled

Very interpretable: hyperrectangles, weighted nearest neighbor
Can rank features using out-of-bag estimates

Fast to train, fast to query

Very effective in practice, especially if the data has some structure



Building decision trees

A (resampled) S;, it is recursively split until a stopping criterion is satisfied.
At each step, a single feature [ is chosen for the split.

To identify the split:
Given () C &, find 0" in the domain of / s.t. b" minimizes an impurity criterion h(b)
E.g., for regression:

Let [, = {(XY) €eq : Xf < b} and U, = {(X Y) cqQ : Xf > b}

hh)= Y Y—le| Yooy + > Y—; ZYY

(X,Y)eL (X,Y)eLy (X,Y)eU,



Defining variants of random forests

INGREDIENTS:

1. Impurity criterion h



Defining variants of random forests

INGREDIENTS:
1. Impurity criterion h

2. ...
(Each leaf /;; can store Z;; = {(x.y) € S; : ¢;(x) = j}, rather than a single value 17, ;)

A prediction functionm : 27 x ... x 2P 5 R:

prediction for z = m (Zlol(,,?), R Z,\,,(;)l(v,?))



Random forests for CDE — Previous approaches

1. Impurity criterion: Same as for regression

2. Prediction function: Kernel estimation:

t
Let 7 (1) = U Zig(x)
i=1

) 1
(ylz) = K(Y —1
fylz) Z0)] (XT);)EZ(I) Y —y)
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1. Impurity criterion: Same as for regression . Not appropriate for CDE, bwidth choice
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Random forests for CDE — Previous approaches

1. Impurity criterion: Same as for regression . Not appropriate for CDE, bwidth choice

2. Prediction function: Kernel estimation:

t
Let Z () = U Zig(x)
i=1

fol)= s S KO -y

(X,)Y)eZ(x)

“ Expensive in terms of storage and evaluation time



Sufficient statistics

J: a parametric family of probability distributions:
feF=1,0cO

A: sample from f.

s(A) € R" is a sufficient statistic for F iff
Pr(6 | A,s(A)) =Pr(0]s(A))

E.g., for 7 = Gaussians, s(A) = (avg(A),var(A)) ors(A) = (|A],sum(A), sumsq(A))

10



Sufficient statistics
F: a parametric family of probability distributions:
feF=7[p0cO

A: sample from f.

s(A) € R"™ is a sufficient statistic for F iff
Pr(6 | A,s(A)) =Pr(0]s(A))

E.g., for 7 = Gaussians, s(A) = (avg(A),var(A)) ors(A) = (|A],sum(A), sumsq(A))
Not all 7 have s, but 7 of the exponential family have s s.t.

s(AUB) =s(A) +s(B)
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Random forests for CDE — Our method

JF: user-specified parametric (exponential) family of probability distributions.

1. Impurity criterion: cross-entropy :
(For discrete distribs p and ¢, crentr(p,q) = — >~ p(x)log(g(x)))
Forbe R, let L, = {(X,Y)eQ : Xy <bland U, = {(X,Y) € Q : Xy >b}.
Fit f7,. fu, € F (froms(Ly), s(U}))
hb)=— > log(fr,(¥) — D log(f,(Y)

(X,Y)ELy (X,Y)€eU,
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Random forests for CDE — Our method

JF: user-specified parametric (exponential) family of probability distributions.

1. Impurity criterion: cross-entropy :
(For discrete distribs p and ¢, crentr(p,q) = — >~ p(x)log(g(x)))
Forb e R let L, = {(X.Y)e@Q : Xy <bjand U, = {(X.Y)c @ : X;>Db}.
Fit /7, [, € 7 (froms(Ly,), s(U}))
hp) =~ Y log(fr,(Y) = > log(fr,(Y))

(X, Y)EL, (X,Y)eU,

. Specific to CDE!
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Random forests for CDE — Our method

2. Prediction function: fit using sufficient statistics:
(Store 5,; = s(Z;;) in leaf /; ;). When a point = € D arrives, compute

Fit / € F using s, and return it

12



Random forests for CDE — Our method

2. Prediction function: fit using sufficient statistics:
(Store 5,; = s(Z;;) in leaf /; ;). When a point = € D arrives, compute

t

t
sz =8(Z(x)) =s <U Zz'o[(;r)> - Z Sig(x)
i=1

i=1

Fit / € F using s, and return it . Small memory, fast computation
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Preliminary Experiments

GoaLs: does any of this make any sense? @5
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Preliminary Experiments

GoaLs: does any of this make any sense? @

Data generating process:
1. Choose centers ¢, . . ., ¢y from standard bivariate Gaussian

2. Sample points (1, 1) from bivariate Gaussian mixture with centers ¢; with diagonal
covariance matrices

3. Exponentially transform y = ¥
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CDE Tree with Gaussian distribution, minimizing Entropy
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CDE Tree with Gaussian distribution, minimizing Entropy
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CDE Forest with Gaussian distribution, minimizing Entropy
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CDE Forest with Gamma distribution, minimizing Entropy
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Future directions

1) Relax parametrization requirement!

IDEA: Generalized Method of Moments 0{
1) At /;;, store many statistics of Z;;, and a small sample of it

2) For prediction, use stats and sample to fit a semi-parametric model under moment
conditions

2) Use soft splits to allow for “gentler” changes of values
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Recap

A method for conditional density estimation using random forests
It uses cross-entropy as impurity criterion for tree-growth
It stores sufficient statistics at tree leaves for inference

Fast to build, fast to query, small memory footprint

Cyrus COUSINS MATTEO RIONDATO
ccousins@cs.brown.edu (@teorionda

http://matteo.rionda.to
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Image credits

Figure on page 1: Public domain https://libreshot.com /foggy-forest/
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