Conditional Density Estimation with Random Forests and Sufficient Statistics

Cyrus Cousins Brown University and Matteo Riondato Two Sigma Labs

FouLaRD'18 - September 14, 2018

The problem

 $(X,Y) \sim \Pi, \quad X \in \mathcal{D}, Y \in \mathbb{R}$

Given $(X_1, Y_1), \dots, (X_\ell, Y_\ell) \stackrel{\mathsf{iid}}{\sim} \Pi$, *Regression:* estimate $\mathbb{E}_{\Pi}[Y \mid X]$

The problem

 $(X,Y) \sim \Pi, \quad X \in \mathcal{D}, Y \in \mathbb{R}$

Given $(X_1, Y_1), \dots, (X_{\ell}, Y_{\ell}) \stackrel{\text{iid}}{\sim} \Pi$, *Regression:* estimate $\mathbb{E}_{\Pi}[Y \mid X]$

Conditional Density Estimation (CDE): estimate the conditional PDF (CD) $f(y \mid X)$ (Pr $(a \le Y \le b \mid X) = \int_a^b f(y \mid X) dy$)

CDE is more nuanced, informative:

detect skewness & multimodality, compute quantiles, ...

Our contribution

A parametric variant of decision trees and random forests for CDE.

Key properties:

- Fast to train, as it uses cross-entropy as impurity criterion
- Fast to query, as it stores *sufficient statistics* at the leaves to compute the CD. Small(er) storage requirements (than previous work)

Our contribution

A parametric variant of decision trees and random forests for CDE.

Key properties:

Fast to train, as it uses *cross-entropy* as *impurity criterion*Fast to query, as it stores *sufficient statistics* at the leaves to compute the CD.

Small(er) storage requirements (than previous work)

LIMITATION: (for now)

Only estimate CDs from parametric families of distributions with sufficient statistics

Random forests

Split the feature space in *hyperrectangles*

Diversity: Each tree T_i is built using a *resampled* S_i from training set S. m_{ij} : average of Y values of subset of S mapped to leaf j of tree i.

Random forests

Split the feature space in *hyperrectangles*

Diversity: Each tree T_i is built using a *resampled* S_i from training set S.

 m_{ij} : average of Y values of subset of S mapped to leaf j of tree i.

Prediction for $x \in \mathcal{D} = \mathbb{R}$: $\frac{1}{t} \sum_{i=1}^{t} m_{i,\phi_i(x)}$, $\phi_i(x) = \text{leaf of } T_i \text{ that } x \text{ is mapped to.}$

Why random forests?

Avoid decision tree tendency to *overfit* (or have high variance)

By having *multiple trees*, the variance is controlled

Very interpretable: hyperrectangles, weighted nearest neighbor

Can rank features using out-of-bag estimates

Fast to train, fast to query

Very effective in practice, especially if the data has some structure

Building decision trees

A (resampled) S_i , it is *recursively split* until a *stopping criterion* is satisfied.

At each step, a *single feature f* is chosen for the split.

To identify the split:

Given $Q \subseteq S_i$ find b^* in the domain of f s.t. b^* minimizes an *impurity criterion* h(b)E.g., for regression:

Let $L_b = \{(X, Y) \in Q : X_f < b\}$ and $U_b = \{(X, Y) \in Q : X_f \ge b\}$

$$h(b) = \sum_{(X,Y)\in L_b} \left(Y - \frac{1}{|L_b|} \sum_{(X,Y)\in L_b} Y \right)^2 + \sum_{(X,Y)\in U_b} \left(Y - \frac{1}{|U_b|} \sum_{(X,Y)\in U_b} Y \right)^2$$

Defining variants of random forests

INGREDIENTS:

1. *Impurity criterion h*

2. ...

Defining variants of random forests

INGREDIENTS:

1. Impurity criterion h

2. ...

(Each leaf ℓ_{ij} can store $Z_{ij} = \{(x, y) \in S_i : \phi_i(x) = j\}$, rather than a single value m_{ij}) A prediction function $m : 2^{\mathcal{D}} \times \cdots \times 2^{\mathcal{D}} \to \mathbb{R}$:

prediction for $x = m(Z_{1\phi_1(x)}, \ldots, Z_{k\phi_1(x)})$

Random forests for CDE - Previous approaches

- 1. Impurity criterion: Same as for regression
- 2. Prediction function: *Kernel estimation*: Let $Z(x) = \bigcup_{i=1}^{t} Z_{i\phi_i(x)}$

$$\hat{f}(y|x) = \frac{1}{|Z(x)|} \sum_{(X,Y)\in Z(x)} \mathsf{K}(Y-y)$$

Random forests for CDE – Previous approaches

- 1. Impurity criterion: Same as for *regression* ON Not appropriate for *CDE*, bwidth choice
- 2. Prediction function: Kernel estimation:

Let $Z(x) = \bigcup_{i=1}^{t} Z_{i\phi_i(x)}$

$$\hat{f}(y|x) = \frac{1}{|Z(x)|} \sum_{(X,Y)\in Z(x)} \mathsf{K}(Y-y)$$

Random forests for CDE - Previous approaches

- 1. Impurity criterion: Same as for *regression* Not appropriate for *CDE*, bwidth choice
- 2. Prediction function: Kernel estimation:

Let $Z(x) = \bigcup_{i=1}^{t} Z_{i\phi_i(x)}$ $\hat{f}(y|x) = \frac{1}{|Z(x)|} \sum_{(X,Y) \in Z(x)} \mathsf{K}(Y-y)$

Sufficient statistics

F: a *parametric family* of probability distributions:

 $f \in \mathcal{F} = f_{\theta}, \theta \in \Theta$

A: sample from f_{θ} .

 $\mathbf{s}(A) \in \mathcal{R}^w$ is a *sufficient statistic* for \mathcal{F} iff

 $\Pr(\theta \mid A, \mathsf{s}(A)) = \Pr(\theta \mid \mathsf{s}(A))$

E.g., for $\mathcal{F} = \text{Gaussians}$, s(A) = (avg(A), var(A)) or s(A) = (|A|, sum(A), sumsq(A))

Sufficient statistics

F: a *parametric family* of probability distributions:

 $f \in \mathcal{F} = f_{\theta}, \theta \in \Theta$

A: sample from f_{θ} .

 $\mathbf{s}(A) \in \mathcal{R}^w$ is a *sufficient statistic* for \mathcal{F} iff

 $\Pr(\theta \mid A, \mathsf{s}(A)) = \Pr(\theta \mid \mathsf{s}(A))$

E.g., for $\mathcal{F} = \text{Gaussians}$, $s(A) = (\operatorname{avg}(A), \operatorname{var}(A))$ or $s(A) = (|A|, \operatorname{sum}(A), \operatorname{sumsq}(A))$ Not all \mathcal{F} have s, but \mathcal{F} of the *exponential family* have s s.t.

 $\mathsf{s}(A\cup B)=\mathsf{s}(A)+\mathsf{s}(B)$

F: *user-specified* parametric (exponential) family of *probability distributions*.

1. Impurity criterion: *cross-entropy* :

(For discrete distribs p and q, crentr $(p,q) = -\sum_{x \in X} p(x) \log(q(x))$) For $b \in \mathbb{R}$, let $L_b = \{(X, Y) \in Q : X_f < b\}$ and $U_b = \{(X, Y) \in Q : X_f \ge b\}$. Fit $f_{L_b}, f_{U_b} \in \mathcal{F}$ (from $s(L_b), s(U_b)$)

$$h(b) = -\sum_{(X,Y)\in L_b} \log(f_{L_b}(Y)) - \sum_{(X,Y)\in U_b} \log(f_{L_b}(Y))$$

F: *user-specified* parametric (exponential) family of *probability distributions*.

1. Impurity criterion: *cross-entropy* :

(For discrete distribs p and q, crentr $(p,q) = -\sum_{x \in X} p(x) \log(q(x))$) For $b \in \mathbb{R}$, let $L_b = \{(X, Y) \in Q : X_f < b\}$ and $U_b = \{(X, Y) \in Q : X_f \ge b\}$. Fit $f_{L_b}, f_{U_b} \in \mathcal{F}$ (from s (L_b) , s (U_b))

$$h(b) = -\sum_{(X,Y)\in L_b} \log(f_{L_b}(Y)) - \sum_{(X,Y)\in U_b} \log(f_{L_b}(Y))$$

2. Prediction function: *fit using sufficient statistics*: (Store $s_{ij} = s(Z_{ij})$ in leaf $\ell_{i,j}$). When a point $x \in D$ arrives, compute

$$s_x = \mathsf{s}(Z(x)) = \mathsf{s}\left(\bigcup_{i=1}^t Z_{i\phi_i(x)}\right) = \sum_{i=1}^t s_{i\phi_i(x)}$$

Fit $f \in \mathcal{F}$ using s_x and return it

2. Prediction function: *fit using sufficient statistics*: (Store $s_{ij} = s(Z_{ij})$ in leaf $\ell_{i,j}$). When a point $x \in D$ arrives, compute

$$s_x = \mathbf{s}(Z(x)) = \mathbf{s}\left(\bigcup_{i=1}^t Z_{i\phi_i(x)}\right) = \sum_{i=1}^t s_{i\phi_i(x)}$$

Fit $f \in \mathcal{F}$ using s_x and return it \bigcirc Small memory, fast computation

Preliminary Experiments

GOALS: does any of this make any sense?

Preliminary Experiments

GOALS: does any of this make any sense?

Data generating process:

1. Choose centers c_1, \ldots, c_ℓ from standard bivariate Gaussian

2. Sample points (x, y) from bivariate Gaussian mixture with centers c_i with diagonal covariance matrices

3. Exponentially transform $y = e^y$

Future directions

1) Relax parametrization requirement!

IDEA: Generalized Method of Moments

1) At ℓ_{ij} , store many statistics of Z_{ij} , and a small sample of it

2) For prediction, use stats and sample to fit a *semi-parametric* model under *moment* conditions

2) Use soft splits to allow for "gentler" changes of values

Recap

A method for *conditional density estimation* using *random forests* It uses *cross-entropy* as impurity criterion for tree-growth It stores *sufficient statistics* at tree leaves for inference Fast to build, fast to query, small memory footprint

> CYRUS COUSINS ccousins@cs.brown.edu

MATTEO RIONDATO @teorionda http://matteo.rionda.to

Image credits

Figure on page 1: Public domain https://libreshot.com/foggy-forest/