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Abstract
We introduce CaDET, an algorithm for parametric Conditional Density Estimation (CDE)
based on decision trees and random forests.CaDET uses the empirical cross entropy impurity
criterion for tree growth, which incentivizes splits that improve predictive accuracymore than
the regression criteria or estimated mean-integrated-square-error used in previous works.
CaDET also admits more efficient training and query procedures than existing tree-based
CDE approaches, and stores only a bounded amount of information at each tree leaf, by
using sufficient statistics for all computations. Previous tree-based CDE techniques produce
complicated uninterpretable distribution objects, whereas CaDET may be instantiated with
easily interpretable distribution families, making every part of the model easy to understand.
Our experimental evaluation on real datasets shows thatCaDET usually learnsmore accurate,
smaller, and more interpretable models, and is less prone to overfitting than existing tree-
based CDE approaches.
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1 Introduction

Conditional Density Estimation (CDE) is a fundamental statistical task. Given a domain X ,
a codomain Y , and a joint Probability Density Function1 (PDF) ρ(·, ·) over X ×Y , the CDE
task is to estimate, for each x ∈ X , the Conditional (probability) Density Function ρ(·|x).
CDE estimators are inductively learned from a training set Z , which is a collection of n pairs
(x, y) ∈ X × Y drawn i.i.d. from the distribution arising from ρ(·, ·).

Classical regression estimates only the conditional expectationE[y|x], whereas CDE esti-
mates the conditional distribution of y given x . Depending on the application, conditional
density estimates can be used as-is, or their quantiles, moments, and other statistics can be
computed,makingCDEmore flexible than regression. Regressors often assume homoskedas-
ticity, while CDE methods handle heteroskedasticity, and can thus describe complicated
phenomena like skew or multimodality. CDE can be also used when regression is mean-
ingless, e.g., when conditional densities exhibit heavy tailed power-law distributions with
undefined expectation.

We focus our attention on interpretable CDE, where the task is to train an accurate CDE
model such that both the model and its estimates are easy to understand by a human analyst.
Interpretability is difficult to quantify, but in our context, having small representation size and
low query complexity is a necessary condition, and a reasonable proxy for interpretability, as
the analyst should be able to conceptualize or visualize the entire model, and mentally follow
the process bywhich queries are answered.Decision trees and random forests naturally satisfy
these requisites. It is also necessary that density estimates are interpretable, as understanding
the model and query process is only beneficial if the analyst can also understand the actual
predictions. Simple parametric distributions are interpretable at a glance, but large mixture
models, non-parametric estimates, and complex graphical models, while computationally
convenient, are largely uninterpretable.

Existing tree-based2 CDE techniques learn uninterpretable models, and often select splits
that do not yield even local improvements to CDE accuracy. These techniques must store all
training labels associated with each leaf in order to answer queries, yielding high storage
costs and query time complexities. Probabilistic graphical models with tree structure address
some of these issues, and bear some resemblance to decision trees, but inference on them is
far more complicated, and the learned models are less interpretable to the human analyst.

Contributions We present CaDET, a CDE algorithm based on decision trees and random
forests that overcomes the above limitations of existing tree-based CDE approaches, and
produces interpretable parametric conditional density estimates.

– CaDET trees are standard decision trees that use parametric distributions stored at the
leaves to answer conditional density queries. While parametric CDE methods are less
expressive than non-parametric methods, they usually require less training data, better
leverage domain knowledge, and are more interpretable, as they store fewer parameters
and produce simpler estimates.

– CaDET trees use the empirical cross-entropy impurity criterion for tree growth, which
directly incentivizes splits that lead to more accurate estimates than the criteria used by
existing tree-based CDE techniques. We show that CaDET generalizes information-gain
classification trees and mean-square-error-minimizing regression trees to a broad family
of parametric CDE estimators.

1 We make no assumptions on the measure space beyond the existence of densities, thus our model covers
continuous, discrete, and mixed spaces.
2 We use “tree-based” to describe both decision-tree- and random-tree-based techniques.
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– CaDET is the first tree-based CDE technique that can answer queries without requiring
complex graphical model operations or iterating over stored training labels. Instead, each
leaf stores a fixed-size sufficient statistic for the labels of training points mapped to it,
which allows CaDET to perform Maximum Likelihood Estimation (MLE) as though it
had access to the training labels.

– By selecting parametric families with appropriate support, CaDET can handle both uni-
variate and multivariate CDE, as well as CDE on more exotic spaces, such as directional
spaces, probability simplices, and mixed spaces, whereas non-parametric methods are
generally restricted to particular domain types.

– Our experimental evaluation on real datasets shows that CaDET produces models that
are generally more accurate, less prone to overfitting, and are more interpretable than
existing tree-based CDE techniques.

Outline The paper is organized as follows. An introduction to decision trees and random
forests is given in Sect. 2. We discuss related work in Sect. 3. CaDET, is presented in
Sect. 4, followed by extensions to the basic algorithm in Sect. 5. We present our experimental
comparison of CaDET to existing tree-based CDE techniques in Sect. 6. Some conclusions
complete the work in Sect. 7.

2 Decision trees and random forests

We now define the key concepts about decision trees and random forests. Our description of
these data structures and the learning procedure is sufficiently general to encompass various
learning tasks, including regression, classification, and CDE.

Decision trees As in the introduction, consider a domain X and a codomain Y , and let Z be
the training set, which is a collection of n pairs (x, y) ∈ X ×Y . A decision tree T is a strict
rooted binary tree such that:

1. each non-leaf node v stores a split rule sv that maps each element of X to either the left
or the right child of v, splitting X into two. For any node u (leaves included), there is a
subset of X that is mapped to u. Any x ∈ X is mapped to all the nodes found by walking
down the tree T starting from the root and following the split rule at each encountered
non-leaf node. For any node u, we denote with T(u; T , Z) the subset of Z that is mapped
to u. For any x ∈ X we denote with tl(x; T ) the leaf of T that x is mapped to;

2. each leaf � stores some information L(�; T ), a set of values whose role we describe below.
L(�; T ) is a function of T(�; T , Z), the elements of Z that T maps to �.

As an example, in standard regression trees with numeric features, a split rule sv at a non-
leaf node v is a univariate threshold function, which is an indicator function for an inequality
on the value of a single feature, such as “age ≤ 4.” Elements that satisfy the condition are
mapped to the left child of v, the others to the right child. In the same scenario, the information
L(�; T ) stored at a leaf � is the mean of the Y components of T(�; T , Z).

We are usually interested in the leaf information or in the set of training points associated
with the leaf containing some query point x ∈ X , so we abuse notation, taking L(x; T ) to
mean L

(
tl(x; T ); T )

, and T(x; T , Z) to mean T
(
tl(x; T ); T , Z

)
.

Query answeringDecision trees and random forests are used to answer queries. For a decision
tree T (we discuss forests later) that makes predictions in some codomain U , queries are
answered with the function q(·; T ) : X → U , where for x ∈ X , q(x; T ) is computed
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using the information L(x; T ) stored at the leaf to which T maps x . In univariate regression,
U = Y = R, and the query response is simply q(x; T ) = L(x; T ), but in general U may
be different than Y (e.g., in probabilistic classification, Y is a discrete set, and U contains
distributions over Y), and the leaf information may be used in various ways to respond to
queries.

Impurity criterion The split rule in each non-leaf node is learned using the training set.
Before describing the learning procedure, we introduce impurity criteria, which are functions
m : Yn → R. For a set of training labels Y ∈ Yn , m(Y ) is the impurity value of Y , which
is usually a proxy for the average loss that any constant prediction would incur over Y . We
often abuse notation, taking m(Z) for Z ∈ (X × Y)n to simply ignore X , and compute the
impurity over the Y components of Z .

The Mean Square Error (MSE) impurity, used in regression trees (Breiman et al. 1984),
is

mmse(Y ) = 1

|Y |
∑

y∈Y

(
y − Ȳ

)2
, where Ȳ = 1

|Y |
∑

y∈Y
y . (1)

Taking P̂(i) to be the sample frequency (in Y ) of i ∈ Y , the (discrete) entropy impurity, used
in information-gain classification trees (Quinlan 1986), is

mH(Y ) = −
∑

i∈Y
P̂(i) ln

(
P̂(i)

)
. (2)

These impurities correspond to the square loss and cross entropy loss of regressors and
probabilistic classifiers, respectively, though they may also be interpreted as measures of
dispersion at the leaves of a decision tree. Under either interpretation, by selecting splits to
minimize total leaf impurity, decision trees seek to explain as much variation in Y through
X as possible.

Some tree-based CDE methods (Pospisil and Lee 2018) use the Mean Integrated Square
Error (MISE) impurity, defined as

mmise(Y ) = 1

|Y |
∑

y∈Y

∫

Y

(
ρ̂B(y) − ρ(y|x))2 dy,

where ρ̂B(·) is the estimated density computed using B, and ρ(·|x) is the true conditional
density given x . While this impurity criterion incentivizes returning ρ(·|x) as the estimate,
computingmmise(Y ) requires knowledge of ρ(·|x) itself, so Pospisil and Lee (2018) approx-
imate these true densities with a cosine or tensor basis non-parametric estimate. Since
estimating ρ(·|x) is the goal of CDE, using the MISE impurity creates a cyclic dependency
that is not easily resolved.

Learning procedure The learning procedure builds the tree starting from the root. It chooses
a split rule sv for the current node v and creates its two children. To choose sv , it finds the par-
titioning of T(v; T , Z) into L and R that maximizes, over some family of partitionings (such
as the univariate thresholds mentioned above for regression trees), the impurity reduction
w.r.t.m(·), defined as

∣∣T(v; T , Z)
∣∣m

(
T(v; T , Z)

) − (|R|m(R) + |L|m(L)
)

. (3)

The split rule sv stored at v is then chosen in such away as to be consistentwith the partitioning
of T(v; T , Z) into L and R. The procedure recursively splits each child v until a stopping
criterion is met. Example criteria include the depth of v exceeding a user-specified threshold,
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the impurity reduction falling short of a user-specified threshold, or the family of partitionings
for v being empty.

Random forestsA random forest F (Breiman 2001) is a collection of trees T1, . . . , Tt , where
each tree is trained using the procedure described above, but each tree uses a resampled
training set. This bagging of the original training set Z is done with the goal of increasing
diversity and lowering variance. To further promote diversity among the forest, a random
subset of the family of partitionings is searched at each node. Given a query point x ∈ X ,
the leaf information L(x; Tj ) for each tree Tj ∈ F is used to compute an ensemble response
to queries. In the running example of regression trees, the query response is a simple average
of tree predictions, namely

q(x; F) = 1

t

∑

T∈F
L(x; T ) .

3 Related work

Rosenblatt (1969) first describes CDE with kernel CDE, which applies Kernel Density Esti-
mation (KDE) to the CDE problem, by reporting ρ̂(y|x) = ρ̂(y,x)

ρ̂(x) , for each ρ̂(·) estimate
on the RHS made with KDE. Kernel CDE and many other nonparametric estimators require
that the joint density is absolutely continuous to ensure that densities exist and that densities
over Y and X ×Y exist. Generalized Linear Models (GLM) (Nelder and Wedderburn 1972)
are CDE methods that essentially generalize linear regression beyond the fixed-variance
Gassian case. They do not require absolute continuity, although Y must be continuous. Low-
dimensional GLMare generally interpretable but inflexible, while generalizations like import
vector machines (Zhu and Hastie 2002) are flexible but uninterpretable.

By their inherently probabilistic nature, graphical models are well-suited for CDE. Cutset
networks (Rahman et al. 2014; DiMauro et al. 2017) are OR trees with tractable probabilistic
models at their leaves, and mixed-sum product networks (Molina et al. 2018) are graphical
models with tree structure formixed data. Each bears some resemblance to decision trees, and
admits more efficient induction and inference than general graphical models. However, they
must be large enough to represent conditional density relationships between all variables,
since they make no distinction between features and labels. Answering CDE queries on these
models requires, despite their tree structure, a complicated global process of marginalization,
conditioning, and related operations, often spanning the entire network. This procedure is
less efficient and more recondite to the human analyst than standard decision tree queries,
which occur locally along a single root-to-leaf path.

Decision trees are lauded for their simplicity, efficiency, and interpretability, but current
tree-basedCDE techniques lack these properties.Chaudhuri et al. (2002) propose thefirst tree-
basedConditionalQuantileEstimation (CQE) technique, andMeinshausen (2006) introduces
the first tree-based CQE approach, Quantile Regression Forest (QRFs). QRFs minimize
standard regression impurity criteria to select split rules, which essentially only consider
the means of the target variable y in the subsets resulting from the split, rather than taking
into account the entire sample distribution of the target variable. These impurity criteria are
ill-suited for CDE, as they do not incentivize splits that improve CDE estimates (discussed
further in Sect. 4.2). Pospisil and Lee (2018) introduce Random Forests for Conditional
Density Estimation (RFCDE), which are largely equivalent to CQE, except they use estimated
MISE impurity (whose issues were discussed in Sect. 2), and output KDE (effectively kernel-
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smoothed quantile estimates). RFCDEandQRFqueries operate on the training labelsmapped
to each leaf, which must be stored and processed explicitly, incurring high storage and query
costs.

Hothorn and Zeileis (2017) propose the transformation forest (TF), which chooses split
rules using null-hypothesis testing. It is not clear that conservatively chosen splits benefit
forests, as ensemble methods thrive on diverse weak learners. TFs fit distributions using
transformation families: given afixed univariate PDFψ they pick an invertible transformation
function φ : R → R, producing the density estimate (ψ ◦ φ)(y) = | d

dyφ(y)|−1ψ
(
φ(y)

)
.

The learned φ can be complicated, yielding uninterpretable models even for simple ψ , and
TFs must also store and process raw labels to answer forest queries (see also Sect. 5).

CaDET overcomes these limitations with a parametric approach, learning interpretable
trees that make parametric density estimates. It uses the empirical cross-entropy impurity
criterion, which incentivizes effective splits for CDE. CaDET attains low storage and query
costs by storing sufficient statistics of the training labels associated with each leaf, requiring
bounded memory and computation. CaDET estimates parametric densities within a user-
selected family, which are generally more interpretable, and learning them requires fewer
samples than nonparametric estimates. Finally, as CaDET makes no assumptions on the
underlying probability space, it can be instantiated directly on arbitrary probability spaces
(including multivariate, mixed, and other exotic cases).

4 CADET: interpretable parametric CDE with trees and forests

CaDET is a specific instantiation of the decision tree and random forest models (Sect. 2). It
makes heavy use of sufficient statistics, so we first discuss this concept.

4.1 Sufficient statistics

Let F be a parametric family of PDFs over Y , with parameter space Θ , and take θ ∈ Θ .
The member of F identified by θ is denoted as ρ(·;F, θ). We omit F from this and other
notation when clear from context.

Let Y ∈ Yn for some sample size n, sampled i.i.d. from the distribution arising from some
unknown ρ(·; θ) ∈ F . A sufficient statistic for Θ (alternatively referred to as a sufficient
statistic for F) is a vector-valued function w(n) : Yn → R

dim(w) (where dim(w) is the
codomain dimension of w(·)) such that w(n)(Y ) is as informative as Y for the purpose of
estimating the unknown θ that determines the unknown PDF ρ(·; θ) (Casella and Berger
2002, Sect. 6.2). For example,

w(n)(Y ) =
( ∑

y∈Y
y,

∑

y∈Y
y2

)

is a sufficient statistic for the Gaussian family, with MLE mean and variance μ̂ = w(n)
1 (Y )

n

and σ̂ 2 = w(n)
2 (Y )

n − μ̂2. A sufficient statistic for the Pareto family is

w(n)(Y ) =
(
min(Y ),

∏

y∈Y
y

)
. (4)
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The Fisher-Neyman factorization theorem (Halmos et al. 1949) shows that for any PDF
ρ(·; θ) : Y → R0+ from a family F with sufficient statistic w(1)(·) : Y → R

dim(w), there
exists a base measure h(·) : Y → R0+ and a factorization function F(·; ·) : Rdim(w) × Θ →
R0+ such that

ρ(·; θ) = h(·)F(
w(1)(·); θ

)
. (5)

We now define p(n)(·) : Rdim(w) → Θ to be the function that selects θ ∈ Θ to maximize the
likelihood of an i.i.d. sample Y ∈ Yn given w(n)(Y ):

p(n)
(
w(n)(Y )

)
= argmax

θ∈Θ

∏

y∈Y
ρ(y; θ) = argmax

θ∈Θ

∑

y∈Y
ln

(
F(w(n)(Y ); θ)

)
, (6)

where the rightmost equality follows from (5). We omit the sample-size superscript from
both w(·) and p(·) when clear from context, and further abuse notation when discussing
trees, letting w(n)(Z) ignore the X elements of a sample Z ∈ (X × Y)n .

Exponential classA natural sufficient statistic is a sufficient statistic forF , such that for i.i.d.
samples Y ∈ Yn , Y ′ ∈ Yn′

, and their concatenation Y � Y ′, it holds (Casella and Berger
2002, Thm. 6.2.10) that

w(n+n′)(Y � Y ′) = w(n)(Y ) + w(n′)(Y ′) . (7)

A distribution familyF with parameter spaceΘ and supportY is said to be in the exponential
class if it admits a factorization into a natural sufficient statisticw(1)(·) : Y → dim(w), base
measure h(·) : Y → R+, parameter function η(·) : Θ → R

dim(w), and log-partition function
A(·) : Θ → R, such that any PDF ρ(·; θ) ∈ F can be written as

ρ(·; θ) = h(·) exp(η(θ) · w(1)(·) − A(θ)
)
, (8)

The exponential class contains many well-known (thus interpretable to a human analyst) dis-
tribution families, including the Gaussian, exponential, gamma, beta, Dirichlet, geometric,
and Poisson families. Sufficient statistics and combination functions like (7) are key to the per-
formance guarantees of CaDET, so naturally one might wonder under which conditions they
exist. The Pitman-Koopman-Darmois theorem (Koopman 1936) shows that if a familyF has
fixed support and a bounded-dimensional sufficient statistic, thenF is in the exponential class.

Among variable-support families with a bounded-dimensional sufficient statistic w(·),
some admit a combination function g(·, ·) such that

w(n+n′)(Y � Y ′) = g
(
w(n)(Y ),w(n′)(Y ′)

)
, (9)

which generalizes (7) beyond the exponential class. The Pareto and uniform interval families
admit such g(·, ·); the reader is invited to derive one for the Pareto family, starting from the
sufficient statistic in (4).CaDET estimates conditional densities by storing sufficient statistics
at each leaf of the decision tree, which through (6), are isomorphic to MLE distribution
estimates.

4.2 Decision trees for interpretable parametric CDE

CaDET is an instantiation of the decision tree model described in Sect. 2. It is parameterized
by a parametric family F , which determines the class of densities that a CaDET tree or
forest can predict. Bounded-dimensional sufficient statistics and combination functions are
needed to efficiently train CaDET trees and to aggregate tree information into forest queries,
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so here we assume these exist for F . Their nonexistence does not impact the theory behind
CaDET, thuswithminor changes,CaDETmaybe instantiated for parametric families lacking
bounded-dimensional sufficient statistics or combination functions, although in this case,
training time, forest memory, and forest query time costs may be higher.

Impurity criterionLetF be a parametric family of PDFs,with bounded-dimensional sufficient
statistic w and parameter space Θ . CaDET minimizes the Empirical Cross Entropy (ECE)
impurity, defined as

mece(Y ;F) = − 1

|Y |
∑

y∈Y
ln

(
ρ(y;p(w(Y )))

)
. (10)

TheECE impurity is parametric in the sense that it depends on the hyperparameterF (omitted
when clear from context). This dependence is key, as it allowsmece to incentivize splits that
lead to the data being well-fit by F . The ECE impurity should be contrasted with the MSE
loss from (1), which Hothorn and Zeileis (2017) argue is ineffective for CDE, as it is not
sensitive to changes over X of the conditional distribution of Y , but only to changes of the
conditional expectation of Y .

TheECE is the impurity-criterion counterpart of the cross entropy loss, often used in neural
networks (Goodfellow et al. 2016, Ch. 5.5) and binomial regression models (Weisberg 2005,
Ch. 12). Cross entropy loss is theoretically motivated, both from decision-theoretic and
coding-theoretic perspectives. In decision theory, a strictly proper scoring rule is a loss
function that is uniquely minimized by predicting the true density. The cross entropy (often
called the logarithmic scoring rule), is the only such rule (up to affine transformation) that
is also local, meaning that given label y and estimated distribution ρ̂(·), it may be computed
as a function of ρ̂(y) (Shuford et al. 1966). From a coding theory perspective, cross entropy
is a measure of the degree of inefficiency of using one distribution to encode symbols from
another. The source coding theorem (Shannon 1948) shows thatmaximal efficiency is attained
when the encoding distribution matches the true distribution.

The entropy of a PDF ψ with support Y is3

H(ψ) = −
∫

Y
ψ(y) ln

(
ψ(y)

)
dy .

We now show that ECE impurity and the entropy of the MLE distribution often coincide in
the exponential class.

Lemma 1 Suppose Y ∈ Yn, and F a member of the exponential class, with base measure
h(·) and sufficient statistic w(·). Let θ = p(n)

(
w(n)(Y )

)
, B̂ = 1

n

∑
y∈Y ln

(
h(y)

)
, y′ drawn

with density ρ(·; θ), and B = Ey′
[
ln

(
h(y′)

)]
. Then

1. if ln
(
h(·)) is an affine function of w(1)(·), then mece(Y ) = H

(
ρ(·; θ)

)
; and

2. in general, mece(Y ) = (B − B̂) + H
(
ρ(·; θ)

)
.

Proof We first show Case 2, from which Case 1 follows.

mece(Y ) = −1

n

∑

y ∈ Y
ln

(
ρ(y; θ)

)
Definition of mece(·)

3 This definition of entropy encompasses differential entropy for integration w.r.t. the Lebesgue measure,
discrete entropy for integration w.r.t. the counting measure, and other entropies with appropriate measures.
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= −1

n

∑

y ∈ Y
ln

(
h(y)

) + η(θ) · w(1)(y) − A(θ) Equation 8

= (B − B̂) + A(θ) − C − η(θ) · 1
n

∑

y ∈ Y
w(1)(y) Algebra

= (B − B̂) + A(θ) − C − η(θ) · 1
n
w(n)(Y ) Equation 7

= (B − B̂) +
(
A(θ) − C − η(θ) · Ey′ [w(1)(y′)]

)
Maximum Likelihood

= (B − B̂) + Ey′
[
A(θ) − C − η(θ) · w(1)(y′)

]
Linearity of Expectation

= (B − B̂) − Ey′
[
ln

(
ρ(y′; θ)

)]
Equation 8

= (B − B̂) + H
(
ρ(·; θ)

)
. Definition of H(·)

TheMaximum Likelihood step holds since inMLE, sample sufficient statistics are always
preserved in the fitted distribution (this property is evident in the maximum entropy interpre-
tation of MLE, where it holds by definition).

The additional hypothesis in Case 1 implies the existence of β ∈ R, α ∈ R
dim(w) such

that ln
(
h(·)) = β + α · w(1)(·). It then holds that

B̂ = 1

n

∑

y∈Y
ln

(
h(y)

) = β + α · 1
n
w(n)(Y ) = β + α · Ey′

[
w(1)(y′)

] = B,

and via Case 2, noting that here B − B̂ = 0, we obtain Case 1. �	
Case 1 of Lemma 1 applies to many families of interest, such as the Gaussian, gamma,

and Von-Mises families, where h(·) is constant, and the beta, Dirichlet, and log-Gaussian
families, where ln

(
h(·)) is an affine function ofw(1)(·). When Case 1 holds, the splits chosen

by CaDET are the same that would be chosen by minimizing entropy, as done in information
gain trees. These trees select splits that explain as much variation in Y as possible, leading to
more homogeneous leaves to whichmore accurate distributions can be fit.When the ECE and
entropy do not coincide, an argument can be made for using either as an impurity criterion,
and CaDET can be adapted to instead select entropy-minimizing splits if so desired.

A more practical consequence of Lemma 1 is that the impurity reduction (see (3)) w.r.t.
mece(·)of any split at anynodewith training labelsY can computed fromw(Y )without having
to iterate over Y or knowing B̂. Furthermore,mece(Y ) can be computed fromH

(
ρ(·; θ)

)
even

in Case 2, if B̂ (the sum of log base measures) is computed along with w(Y ). Similar results
can often be derived for F not in the exponential class; the reader is invited to confirm that
for the uniform interval distribution (over R or Z), it holds that mece(Y ) = H

(
ρ(·; θ)

)
.

Leaf informationThe information L(�; T ) stored at the leaf � of aCaDET tree T is the number
of training pointsmapped to the leaf |T(�; T , Z)|, and the sufficient statisticsw(

T(�; T , Z)
)
of

the training elements T(�; T , Z) that T maps to �. For notational convenience, we take L(·; ·)
to be a vector, where the 0th component is the sample size, and the remaining components
are the sufficient statistic, i.e.,

L0(�; T ) = ∣∣T(�; T , Z)
∣∣, and L1:dim(w)(�; T ) = w

(
T(�; T , Z)

)
,

where Va:b(·) is vector slice notation, corresponding to codomain indices a, . . . b of the
vector-valued function V (·). Because CaDET stores onlyw

(
T(�; T , Z)

)
at each leaf �, it has

lower storage and query time costs than current tree-based CDE methods, which must store
and process raw training labels to answer forest queries.
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Response to queries Given a tree T , the response q(·; x, T ) to a query at x ∈ X is the MLE
PDF w.r.t. F on the Y components of T(x; T , Z):

q(·; x, T ) = ρ
(

·;p(N )
(
w(N )

(
T(x; T , Z)

)))
= ρ

(
·;p(N )

(
L1:dim(w)(x; T )

))
,

taking N = |T(x; T , Z)| = L0(x; T ). Since CDE responses are PDFs, which are themselves
functions, we write q(·; x, T ), where the first argument is an element of the domain of the
PDF, the second the query point, and the third the tree.

This response is well-motivated, as T(x; T , Z) should be an approximately independent
sample from approximately the conditional distribution at x . The “approximate” qualification
is needed as split choice induces some dependence, and the conditional distribution changes
as Y varies throughout the leaf. Ignoring the approximation, it is then reasonable to return
the MLE estimate for this sample.

The careful reader may notice that one could just store this PDF at the leaf, in place of
the sufficient statistic of the training set mapped to this leaf. For trees, either suffices, but we
will require sufficient statistics to answer queries with forests.

4.3 Random forests

Consider a random forest F composed of CaDET trees T1, . . . , Tt , with training sets
Z1, . . . , Zt , and shared distribution family F . Here the response q(·; x, F) to the query
at x ∈ X is

q(·; x, F) = ρ

(

· ;p(N )

(

w

(
t⊎

i=1

T
(
x; Ti , Zi

)
)))

=ρ

(

· ;p(N )

(
∑

T∈F
L1:dim(w)(x; T )

))

,

where N =
t∑

i=1

∣∣T
(
x; Ti , Zi

)∣∣ =
∑

T∈F
L0(x; T ),

and for exponential-class F , the sum is from (7), and must be replaced by repeated applica-
tions of g(·, ·) from (9) for F not in the exponential class.

If each training set Zi for each Ti were drawn i.i.d., then sample concatenation across the
trees would be well-motivated, since for any x ∈ X , by the same reasoning as in the tree case,
each T(x; Ti , Zi ) is an approximately i.i.d. sample from the true conditional density at x , thus
the MLE estimator for their sample concatenation should be better than any of the individual
trees estimates. When instead each Zi is created by bagging the original training data, the
samples at each leaf are more dependent (duplicates are more likely), and MLE should
behave similarly to a parametric bootstrap estimate, but the same reasoning of combining
small approximately i.i.d. samples into one large sample and performing MLE holds.

4.4 Discussion

On domains and parametric families CaDET can be instantiated with any parametric family
with a bounded-dimensional sufficient statistic over any Y . In contrast, non-parametric tech-
niques are generally tied to a particular codomain, often R

d . Although many spaces (e.g.,
discrete, simplicial, spherical, or cyclic) can be embedded in Rd , interpreting a nonparamet-
ric model over Rd in Y ⊆ R

d may invalidate density estimates, as densities over Rd are not
necessarily densities over Y .
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Specifically, if Y ⊆ R
d , but densities in Y are interpreted w.r.t. the Lebesgue or Borel

measures in Rd , then often the total mass over Y is less than 1. Furthermore, if Rd and Y do
not share a measure (as in simplicial or spherical domains, where Y is (d − 1)-dimensional),
the total mass of estimated densities can even exceed4 1. Workarounds like transformation
functions exist, though they have their own issues (see Sect. 5), whereas CaDET can handle
tasks directly in their original space, using simple probabilistic models designed to work well
for a particular setting.

Parametric versus non-parametric sample complexity CaDET’s restriction to parametric
families with bounded-dimensional sufficient statistics necessarily limits the representative
power of its CDEs: if F poorly models true conditional densities, then nonparametric CDE
trees may outperform CaDET given enough training data. However, CaDET will generally
perform better with small sample sizes, as MLE exhibits faster convergence than nonpara-
metric techniques.5 We show an example of this behavior in Sect. 6.

This faster rate is particularly important in CDE-trees, since each leaf requires enough
data to accurately estimate conditional densities. CaDET trees thus require fewer samples
at each leaf than nonparametric methods, allowing them to better model conditional den-
sity structure with additional splits. Even with additional splits, CaDET generally remains
more interpretable than nonparametric methods, as splits are easily understood, whereas
complicated nonparametric distribution estimates are not.

Generalizing prior art Let Fc be the categorical family, and FG the unit-variance Gaussian
family. It holds by Lemma 1 that mece(·;Fc) = mH(·), and mece(·;FG) ∝ mmse(·). Thus,
with these family choices, CaDET makes the same splits as entropy-minimizing classifi-
cation trees (Quinlan 1986) and MSE-minimizing regression trees (Breiman et al. 1984),
respectively. CaDET therefore generalizes two classic decision-tree models to a broad class
of parametric estimation problems.

4.5 Training time complexity

Consider the training of a decision tree using a training set Z ∈ (X × Y)n , where splits
are chosen from all univariate threshold functions over a constant number of features to
minimize either mH(·) (for classification) or mmse(·) (for regression). The time necessary
for the training is in the best case �

(
n log n

)
, and in the worst case �

(
n2

)
. TF (Hothorn and

Zeileis 2017) and RFCDE (Pospisil and Lee 2018) require �
(|T(v; T , Z)|) time to evaluate

each potential split of node v, thus training them takes time�
(
n2

)
in the best case and�

(
n3

)

in the worst case. These times are worse than the ones mentioned above by a factor �̃(n
)
.

TrainingCaDET treeswith a familyF attains the faster training timecomplexities ofmH(·)
and mmse(·) trees, as long as F has sufficient statistic w(·) and combination function g(·, ·)
(see (9)), such that g(·, ·),w1(·), and H(

ρ(·;p(w))
)
for anyw ∈ R

dim(w) can all be evaluated
in �(1) time. CaDET attains these time complexities because sufficient statistics can be
updated via g(·, ·) in amortized time at each potential split, and entropies can be efficiently
computed (by assumption), matching the cost of computing discrete entropy or variance
in classification or regression trees. Without bounded-dimensional sufficient statistics or
combination functions, CaDET generally must perform �

(|T(v; T , Z)|) work to evaluate

4 For example, ifY is the unit circleS2, the uniformdistributionon [−1, 1]2 with pdfρ hasmass
∮
S2

ρ(z) dz =
π
2 > 1 when integrated over the unit circle.
5 Concretely, the MISE decays as ωp(n−1) for the best-known KDE bounds (Agarwal et al. 2017), but
Op(n−1) for parametric MLE (Kanazawa 1993).
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a split at node v, exactly as in RFCDE and TF. In this case, CaDET would then attain the
slower training time complexities of these algorithms.

5 Extensions

Parametric distributions with few parameters, such as univariate Gaussians, are gener-
ally interpretable. However, the distribution families one might naturally consider in
high-dimensional or unfamiliar spaces may have many parameters, thus becoming less inter-
pretable. We now discuss three methods to construct rich parametric families over complex
domains from simple constituent families over familiar domains, without sacrificing inter-
pretability:

– product families, which are multivariate distributions built from univariate constituent
distributions;

– transformation families, which can be used to produce distributions with restricted sup-
port to suit domain-specific requirements; and

– union families, which enable performing MLE over multiple families.

Product families We often want to estimate multivariate densities, i.e., Y is a product space
with Y = Y1 × · · · × Yd , but have domain-specific knowledge about each Yi (e.g., whether
the support is discrete, real, or semireal) which standard primitive distributions, such as
the multivariate Gaussian, would ignore. Product families compute the joint density over Y
as a product of density estimates (thus treating each multiplicand as an independent random
variable) over eachY1, . . . ,Yd . Computation over product families is particularly convenient,
as sufficient statistics, densities, and entropies can all be computed from univariate densities,
and the exponential class is closed under finite products.

Product-family CaDET should be contrasted with CaDET applied separately on each Yi ,
and estimating joint densities as products of univariate densities. In both cases, joint CDE
are product distributions, however in the first case, CaDET uses impurity reduction across
all Y1, . . . ,Yd to select splits, whereas in the second case, splits are separately learned for
each Yi . If the conditional densities of each Yi vary similarly over X , then this additional
information allows better split selection in the first case. Additionally, the product-family
tree is simpler than the collection of trees for each Yi , thus more interpretable and less prone
to overfitting.

Transformation familiesOften Y is notRd or some space with a plethora of convenient well-
known distribution families. For example, Y could be the unit sphere, unit simplex, or some
compact subset ofRd . Transformation families contain distributions over such a Y , obtained
by transforming familiar distributions over some isomorphic space Y ′. Such transformations
can be intuitive and thus interpretable; for instance we may transform Cartesian coordinates
of points on the Earth’s surface to the more familiar latitude and longitude coordinates.

A transformation function φ : Y → φ(Y) is a differentiable invertible mapping. Given a
family F over Y parameterized by Θ , we define the φ-transformed density

(ρ ◦ φ)(·; θ) = ∣∣J (
φ(·))∣∣−1

ρ
(
φ(·); θ

)
, (11)

and the corresponding φ-transformed family

F ◦ φ = {(ρ ◦ φ)(·; θ) : θ ∈ Θ}, (12)

where |J (φ(·))| is the absolute determinant of the Jacobian of φ. In CaDET we assume
the existence of a bounded-dimensional sufficient statistic, which is particularly convenient
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with transformation functions through (5), as we may compute the base measure of F ◦ φ as
h(·;F ◦ φ) = |J (φ(·))|−1h(φ(·)) and the sufficient statistic as w(·;F ◦ φ) = w(φ(·);F).

For example, we can construct the inverse-gamma family from φ(y) = y−1 and the
gamma family, and the log-normal family from φ(y) : Rd+ → R

d = ln(y) and the Gaussian
family. The logarithm elicits a domain-change, yielding families over R+, which is useful
for estimating positive quantities.

Transformation functions, when paired with an appropriate coordinate system, can also be
used to construct distributions over sets of Lebesgue measure zero, such as the unit simplex
d = {y ∈ (0, 1)d+1 : ‖y‖1 = 1}, or the unit sphere Sd = {y ∈ R

d+1 : ‖y‖2 = 1}, which
are of key importance in compositional statistics and directional statistics, respectively. E.g.,
for simplicial data we can apply theAdditive Log-Ratio-Transform (ALRT) (Aitchison 1982)

φALRT(y1, . . . , yd+1) : d → R
d =

(
ln

(
y1

yd+1

)
, ln

(
y2

yd+1

)
, . . . , ln

(
yd
yd+1

))
, (13)

and for spherical data, the stereographic projection transform

φStg(y1, . . . , yd+1) : Sd → R
d =

(
y1

1 − yd+1
,

y2
1 − yd+1

, . . . ,
yd

1 − yd+1

)
. (14)

In regression under the assumption of heteroskedastic noise, where the task is to predict
E[y|x], data transformation is unsatisfying: for some transformation φ, learningE[φ(y)|x] is
insufficient, as it does not in general hold thatE[y|x] = φ−1(E[φ(y)|x]). In contrast, in CDE,
we can convert conditional densities over φ(Y) to conditional densities over Y through (11),
so we retain the ability to interpret transformed variables in the untransformed space.

Hothorn and Zeileis (2017) also use transformation functions in their Transformation
Forests (TFs), though they fix distributions and parameterize transformations, while CaDET
does the opposite. For simple cases like affine transformations in location-scale families,
they are equivalent, but we argue that simple distributions with complicated parameterized
transformations are generally less interpretable than complicated parametric distributions
with simple fixed transformations. TFs also only handle Y = R, and operate on quantiles
rather than densities. Generalizing TFs toRd is nontrivial, as workingwithmultivariate quan-
tiles or CDFs of transformations generally requires sophisticated integration, complicating
interpretability and computation.

Transformation is thus intuitive, interpretable, and computationally convenient for para-
metric CDE. These beneficial properties put this use of transformation in stark contrast to
its use in regression and quantile estimation, where it is in general difficult to interpret the
output of transformed models in the original space.

Union families It is often hard to select a priori a parametric family to model conditional
densities. One could select between models trained over multiple families, but to do so would
be inefficient, andwouldperformpoorlywhen thebest family tofit conditional densities varies
over Y . It would be preferable to learn a model that is able to select distribution families in
a data-dependent manner, fitting different distribution families to different regions of X .

One could select the MLE at each leaf among multiple families, but this approach favors
complexity over simplicity, and tends to overfit. Given families F1,F2 such that F1 ⊆ F2

(e.g., the exponential and gamma families), for any i.i.d. sampleY ∈ Yn , withMLEparameter
estimates θ1 = p(n)

(
w(n)(Y ;F1);F1

)
and θ2 = p(n)

(
w(n)(Y ;F2);F2

)
, the MLE sample

densities obey

ρ(Y ;F1, θ1) =
∏

y∈Y
ρ(y;F1, θ1) ≤

∏

y∈Y
ρ(y;F2, θ2) = ρ(Y ;F2, θ2) .
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However, the estimate ρ(·;F1, θ1) is often preferable to ρ(·;F2, θ2), for instance when they
fit similarly well or n is small, as simpler distributions are more interpretable and generally
less susceptible to overfitting.

We address these issues with a more nuanced approach, termed regularized union family
selection. Given families F1, . . . ,Fm , with parameter spaces Θ1, . . . , Θm , the union family
F = ∪m

i=1Fi has parameter space ∪m
i=1({i} × Θi ), with

ρ
(·;F, (i, θ)

) = ρ(·;Fi , θ),

thusF can be used to select among distributions from several families. The sufficient statistics
for each Fi are enough to perform MLE within each subfamily, and for exponential-class
families, we may perform MLE over the entire union family given these sufficient statistics
and the sample log base measures ln

(
h(·;Fi )

)
associated with each Fi (see Lemma 1).

However, to control for overfitting, prioritize simpler distributions, and incorporate a priori
domain knowledge, we take regularization hyperparameters λ = 〈λ1, . . . , λm〉, and select
the distribution that maximizes regularized sample log likelihood, defining p(n)(·;F, λ) as

p(n)
(
w(n)(Y );F, λ

) = argmini∈{1,...,m},θ∈Θi
λi + 1

n

∑

y∈Y
ln

(
ρ(y;Fi , θ)

)
,

with corresponding regularized empirical cross entropy impurity criterion

mece(Y ;F, λ) = min
i∈{1,...,m} λi + mece(Y ;Fi ), (15)

where the notation explicitly references the family and regularization parameters.
There are many reasonable ways to select regularization parameters. For example, in our

experiments we use the Akaike Information Criterion (AIC), setting

λi = dim(Θi )

n
, for i ∈ {1, . . . ,m}, (16)

where dim(Θi ) denotes the dimension of the parameter space of Fi .

6 Experimental evaluation

Here we present the results of our experimental evaluation of CaDET, including the compar-
ison with RFCDE (Pospisil and Lee 2018). We test the versatility of CaDET by instantiating
it with many parametric families, including over multivariate codomains, probability sim-
plices, and a cyclic codomain. We also evaluate CaDET with a union family and regularized
ECE impurity (see Sect. 5). The accuracy of a learned model M is measured with the Average
Conditional Log Likelihood (ACLL) of the conditional density estimations produced by M
on a test set Z ′ ∈ (Y × X )n

′
, i.e.,

1

n′
∑

(x,y)∈Z ′
ln

(
q(y; x, M)

)
.

The ACLL is a good accuracy measure, as it can be computed from the estimated conditional
density q(·; x, M), and is maximized in expectation by the true conditional density.

ImplementationOur implementation6 of CaDET extends scikit-learn (Pedregosa et al. 2011).
It supports many distribution families, shown in Table 1. When building trees, it selects the

6 Source code is provided at http://www.cs.brown.edu/people/ccousins/cadet/ under the new BSD license.
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Table 1 Supported distribution families in our software package, with domain, sufficient statistic codomain
dimension dim(w), whether the family is in the exponential class (EC), and if so, whether the base measure
h(·) is a constant 1, a function of the sufficient statistic f ◦ w, or neither h

Domain type Distribution family Domain dim(w) EC h(·)
Real Exponential R0+ 1 Yes 1

Gamma " 2 Yes 1

Inverse Gamma R+ 2 Yes 1

Inverse Gaussian " 2 Yes h

Pareto " 2 No —

Unit Scale Pareto (1, ∞) 1 Yes 1

Uniform R 2 No —

Directional Von Mises [0, 2π ) 2 Yes 1

Von Mises-Fisher Sd (sphere) d Yes 1

Simplicial Beta (0, 1) 2 Yes f ◦ w

Dirichlet d (simplex) d Yes f ◦ w

Multivariate Real Gaussian R
d 2d + (d

2
)

Yes 1

Gaussian uncorrelated " 2d Yes 1

Gaussian symmetric " d + 1 Yes 1

Log-Gaussian R
d+ 2d + (d

2
)

Yes f ◦ w

Log-Gaussian uncorrelated " 2d Yes f ◦ w

Log-Gaussian symmetric " d + 1 Yes f ◦ w

Integral Geometric N0 1 Yes 1

Poisson " 1 Yes h

Log Series " 1 Yes h

Uniform Z 2 No —

Nominal Bernoulli {0, 1} 1 Yes 1

Categorical {1, 2, . . . , d} d − 1 Yes 1

Gaussian uncorrelated refers to Gaussians with 0 nondiagonal covariance, Gaussian symmetric refers to
Gaussians with scaled identity covariance matrices, and each log Gaussian variant refers to a logarithmically-
transformed Gaussian family

split that minimizes impurity over all univariate threshold functions such that at least some
user-specified number of training points are assigned to each child.We call this parameter the
Minimum Samples per Leaf (MSL). Forests do not search all univariate threshold functions
in all features, but instead consider only univariate thresholds on �√dim(Y) + 1/2� features,
drawn uniformly without replacement at each node.

BaselineWe compare the accuracy and interpretability of variousCaDETmodels to RFCDE
models (Pospisil andLee 2018) onmanymultivariateCDE tasks. RFCDEwas experimentally
shown to be superior to other tree-based techniques such as QRFs (Meinshausen 2006)
and TFs (Hothorn and Zeileis 2017), both of which only operate over univariate Y . We
use the RFCDE implementation provided by the authors, with Gaussian KDE, the normal
reference dynamic kernel-width selection strategy, and a 7-term tensor-cosine basis. This
implementation does not allow log-density queries, and thus can output conditional density
0 (due to limited floating-point precision), to which we assign log-density −1000. This
choice does not artificially disadvantage RFCDE, as our CaDET implementation permits
floating-point log-density queries, which can attain values far below −1000.
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Datasets, tasks, and families We used datasets with different associated prediction tasks,
requiring different choices of the parametric family F :

– The Air Quality dataset (De Vito et al. 2008) tasks us with estimating (multivari-
ate) conditional probability densities of the concentrations (particle count or unit mass
per unit volume) of four pollutants, given time, temperature, humidity, and air qual-
ity sensor readings. We randomly split the dataset into training and test sets of 3,698
samples each. Concentrations must be non-negative, so we use CaDET with the uncon-
strained, uncorrelated, and symmetric log-Gaussian families. We compare these models
to logarithmically-transformed RFCDE.

– The Batting dataset (Lahman 2018) is our largest dataset, with 88,461 samples, each
representing a professional baseball player, with height, weight, age, handedness, birth-
place, league, and team features. Batting tasks us with estimating the probabilities of
a player attaining each of five batting outcomes (base 1–3, home, or strikeout), thus out-
come distributions are members of Y = 4 = {y ∈ (0, 1)5 : ‖y‖1 = 1}. We also define
a 2-way variant, where the task is to estimate the probability of striking out, in which
case Y = [0, 1].
Dirichlet-CaDET and beta-CaDET produce densities w.r.t. the Lebesgue measure over
4 and [0, 1], respectively, and thus are appropriate for the task.Wecompare thesemodels
to three Gaussian-CaDET models and to RFCDE, using the ALRT from (13) for the 5-
way Gaussian-CaDET and RFCDE models to convert to a problem over R4, letting the
strikeout probability be the last (asymmetric) variable of the transformation. In the 2-way
task, we compare beta-CaDET toGaussian-CaDET andRFCDEwithout transformation,
although a density estimate ρ from the non-beta models has

∫ 1
0 ρ(y) dy < 1 (see

Sect. 4.4). This disadvantage is intrinsic to these approaches and highlights the flexibility
of CaDET with transformation functions.

Interpretability is particularly difficult in the 5-way task. Here the Dirichlet estimates
of Dirichlet-CaDET should be understood by any analyst familiar with compositional
statistics, making this model the most interpretable. The Gaussian models are also quite
simple, but although standard in compositional statistics, some effort is required to
interpret the ALRT (see (13)), which makes the Gaussian models behave roughly like
log-Gaussian models. With covariance matrices, Gaussian-CaDET can model correla-
tions between (approximate) log-frequencies, e.g., between the probabilities of reaching
first-base and reaching second-base, unlike the Dirichlet distribution, which has only
5 parameters. Thus, although inherently more complicated, Gaussian-CaDET remains
interpretable, and can even yield insights that would be impossible for Dirichlet-CaDET.

– The task on the Sml2010 dataset (Zamora-Martínez et al. 2014) is to estimate the time of
day, represented as a value in [0, 1), where 1/2 is noon. This task is interesting for its cyclic
nature. Classical regression struggles around midnight, as training points immediately
before and after midnight average to noon (maximally incorrect), and non-parametric
methods fail to enforce the constraint that predicted times be on the interval [0, 1), nor
do they leverage the cyclic nature of the label space. We use the Von-Mises distribution
family, scaled to have support [0, 1), as well as Gaussian-CaDET and beta-CaDET, for
our parametric models, and compare to RFCDE.

– We usemanyUCI datasets (Table 2) to evaluate the efficacy of the impurity criterion used
byCaDET, the use of union families, and the competitiveness of CaDET against RFCDE
on real-world learning tasks. Each task is a multivariate conditional density estimation
task, with each label in Y = R

dim(Y). Most of these datasets are intended for univariate
classification or regression, but we instead predict the continuous variables from the
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ACLL vs MSL on Air Quality ACLL vs N on Air Quality

MSL N

Fig. 1 ACLL as a function of MSL (left) and as a function of the number of noise features N (right) on the
Air Quality dataset. Test ACLL plotted with solid lines, and training ACLL with dotted lines

ACLL vs MSL: All Times ACLL vs MSL: 23:00–1:00 ACLL vs MSL: 11:00–13:00

MSLMSLMSL

Fig. 2 Experiments with Sml2010. Dotted lines denote training ACLL, and solid lines test ACLL. Test ACLL
on all times, 23:00–1:00, and 11:00–13:00 are plotted seperately

categorical or integer-valued variables. In some cases, due to many missing values or
lack of features, we leave some continuous values as features; the details are presented in
the supplementary material. We compare several CaDET variants and RFCDE on these
datasets.

6.1 Results

Impact of minimum samples per leaf on overfittingWe first study how the (MSL) parameter,
which controls the minimum number of training samples per leaf (enforced by the learning
procedure), impacts overfitting in CDE trees. We plot MSL versus training and test ACLL
on the Air Quality dataset in Fig. 1 (left). Here we consider only single trees, as diversity
in random forests tends to obscure overfitting in individual trees.

We see classic bias-variance trade-off curves for all models, with training ACLL mono-
tonically decreasing with the MSL, and test ACLL first increasing, then decreasing. The
training-test ACLL difference is a measure of overfitting, and here it decreases as MSL
increases, and also as the number of parameters in each parametric family (see Table 1)
decreases. The CaDET trees all perform optimally at MSL ≈ 25, whereas RFCDE reaches
optimal performance with MSL≈ 100, illustrating the lower sample complexity of paramet-
ric methods (see Sect. 4.4).
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Figure 2 shows ACLL as function of MSL on the Sml2010 task. In Fig. 2 (left), we
see that the Von-Mises-CaDET outperforms all competitors, which is unsurprising, as Von-
Mises density estimates are best able to represent uncertainty across the midnight boundary.
Indeed in Fig. 2 (center), we see that the Von-Mises-CaDET ACLL decreases least when
considering only test samples on the 23:00–1:00 interval, while the Gaussian-CaDET (which
is least able to split mass between late night and early morning) ACLL decreases the most.
On the 11:00–13:00 interval, Fig. 2 (right), Gaussian-CaDET outperforms the remaining
models for small MSL (i.e., large trees with many leaves), but for higher MSL values, this
advantage disappears. These results support our claim that parametric models that leverage
domain-specific knowledge (in this case the cyclic nature of time) are superior to generic
models that do not.

Susceptibility to irrelevant featuresWe now examine the response of the models to irrelevant
features: a well-designed impurity criterion should be imperturbable to such features and
choose splits independently from them.We augment theAir Quality dataset by generating
N additional noise features, where each feature value for each sample was drawn i.i.d.
from the standard Gaussian distribution. We train models using MSL 50 on this augmented
dataset. We plot training and test ACLL as a function of N in Fig. 1 (right). As N increases,
CaDET ACLL decreases almost imperceptibly, whereas RFCDE ACLL drops sharply and
significantly. RFCDE’s performance drop is not due to overfitting to the noise features, as
both test and training ACLL rapidly decrease. Rather, we attribute it to the approximation
error of its learning algorithm, which is a consequence of the chosen impurity criterion. The
heuristic mmise estimate used by RFCDE inadequately assesses the quality of splits, thus
RFCDE often splits on noise features, degrading model accuracy. Themece used by CaDET
strongly disincentivizes splits on noise features, resulting in similar models regardless of N .

Effectiveness of the chosen impurity criterionWenowexamine the importance of the impurity
criterion via ablation. We train Gaussian-CaDET trees with the MSE impurity from (1)
instead of the ECE from (10), and train “vanilla” CaDET trees as a control. The results are
shown in the two leftmost columns of Table 2 (we discuss the other columns later). We report
ACLL to measure model accuracy, and we quantify interpretability usingmodel size, defined
as the total number of continuous parameters required to represent the distributions at each
leaf of the tree. Vanilla CaDET yields on average, and more often than not, higher (better)
ACLL scores, with much smaller, thus more interpretable, models.

Dependence on training set size We now evaluate the behavior of the ACLL as we increase
the training set size n on the Batting dataset. TheMSL is fixed to �√n + 1

2�, and test ACLL
is computed on all samples not in the training set. We plot tree and forest experiments in
Fig. 3, though overfitting is clearer in the trees.

In the 2-way task, when using trees, beta-CaDET performs the best, though with suffi-
ciently large samples, all models are comparable. In particular, each CaDET model uses a
2-parameter distribution, so we expect a similar amount of overfitting in each, and indeed
we see similar rates of improvement as the training size increases. RFCDE, as expected,
overfits more due to its KDE estimates: its rate of improvement levels off more slowly than
the CaDET models.

In the 5-way tree task, dim(Θ), which varies between 5 for the Dirichlet and symmetric
Gaussian families, and 14 for the Gaussian family, strongly influences model performance.
Eachmodel outperforms all others for a contiguous range of n, and these ranges occur in order
of dim(Θ), with RFCDE beating the CaDET models only for the highest n we examined.
The fact that RFCDE beats all other models with sufficient data is unsurprising, as its KDE
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Tree ACLL vs n on Batting 2-Way Task Tree ACLL vs n on Batting 5-Way Task

nn

Forest ACLL vs n on Batting 2-Way Task Forest ACLL vs n on Batting 5-Way Task

nn

Fig. 3 Test ACLL versus training size n on the 2-way and 5-way Batting tasks. Vertical lines mark where
one model overtakes another in the 5-way experiment

estimates are consistent, thus with enough data should outperform the parametric estimates of
CaDET. The Batting dataset contains 88,461 samples, and with only 7 features, we would
expect simple conditional density relationships between X and Y , thus this task, relative to
the others, should measure a model’s capacity to fit unconditional densities (at leaves) more
than its ability to model conditional structure via splits.

These experiments highlight that CaDET is not only particularly well-suited to small-
sample settings, but also that non-parametric methods overtake CaDET only when an
enormous amount of data is available, even on very simple datasets. The case for CaDET
is even stronger when interpretability is considered: CaDET trees haveO

(
dim(Θ)

√
n
)
total

parameters, while RFCDE trees have �
(
dim(Y)n

)
, as they must store all training labels at

tree leaves.
Forests improve over trees for every model examined in this experiment. The most signifi-

cant improvement is in small-sample performance, which is unsurprising, as forests combine
estimates across trees, thus prediction are based on larger numbers of training samples. The
effect is most pronounced with RFCDE, as while its small-sample performance is still worse
than all CaDET forests, with enough data, it eventually outperforms them. Again we conjec-
ture that this is because the Batting tasks primarily assess unconditional density estimation
(at leaves), and the bagging in forests reduces KDE overfitting in RFCDE.

Effect of using union families We study CaDET with a union family, containing the uncon-
strained, uncorrelated, and symmetric variants of the Gaussian and log-Gaussian families.
As the three variants of the Gaussian and log-Gaussian families (each) are nested, the uncor-
related and symmetric families never uniquely maximize sample likelihood.We employ AIC
regularization from (16) to incentivize the uncorrelated and symmetric families.
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In the rightmost six columns of Table 2, we compare union-CaDET to Gaussian-CaDET
andRFCDE.The union-CaDET trees significantly outperform theGaussian-CaDET trees, as
measured by ACLL, while maintaining significantly smaller model sizes. CaDET produces
smaller models than RFCDE, which averages 6458 distribution parameters per tree, while
producing less accurate (as measured by ACLL) models. The average training-test ACLL
gap for theCaDETmodels is≈ 0.9, but for RFCDE it is≈ 0.1.We thus claim that RFCDE is
underfitting, and that its low training-set ACLL is due to poor split selection, since if all else
were equal, the KDE at RFCDE leaves should be able to overfit much more than CaDET’s
parametric estimates.

7 Conclusion

We present CaDET, a tree-based algorithm for parametric CDE.CaDET learns interpretable
models that produce interpretable estimates.CaDET trees are built byminimizing theEmpir-
ical Cross-Entropy (ECE) impurity criterion. ECE is specific to CDE, thus creates better splits
that lead to better estimates than generic regression impurity criteria. CaDET is a natural
generalization of both MSE regression trees and information-gain classification trees, and
attains the same training time and space complexities, under mild conditions. Our experimen-
tal evaluation shows that CaDET is less prone to overfitting than existing CDE tree-based
algorithms, and can outperform them in both accuracy and interpretability.
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