CADET: Interpretable Parametric Conditional Density Estimation with Decision Trees

Cyrus CousinsMatteo RiondatoBrown UniversityAmherst College

Web: cyrus_cousins@brown.edu Mail: cs.brown.edu/~ccousins/cadet/

ECMLPKDD Würzburg 16.–20.09.2019

"Interpretable Parametric Conditional-Density-Estimation"

Conditional Density Estimation: predict distributions (not point-estimates)
 CADET predicts parametric densities, e.g. GAUSSIAN(1,1) or BETA(3,2)
 CADET trees and predictions are interpretable

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

∃ <\0<</p>

"Interpretable Parametric Conditional-Density-Estimation"

- (1) Conditional Density Estimation: predict distributions (not point-estimates)
- (2) CADET predicts *parametric densities*, e.g. GAUSSIAN(1,1) or BETA(3,2)
- (3) CADET trees and predictions are interpretable
- Existing CDE tree methods
 - High training, query, and storage costs
 - Uninterpretable (non-parametric) estimates
 - High sample complexity

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

"Interpretable Parametric Conditional-Density-Estimation"

(1) Conditional Density Estimation: predict distributions (not point-estimates)

- (2) CADET predicts *parametric densities*, e.g. GAUSSIAN(1,1) or BETA(3,2)
- (3) CADET trees and predictions are interpretable
- Existing CDE tree methods
 - High training, query, and storage costs
 - Uninterpretable (non-parametric) estimates
 - High sample complexity
- ► CADET sacrifices *representativeness* for
 - Efficient training, storage, and querying
 - Easily understood parametric estimates
 - Generalizability

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Interpretability applies to:

(1) Model:

Tree structure easy to visualize & understand

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Interpretability applies to:

(1) Model:

Tree structure easy to visualize & understand

(2) Predictions:

Model output must be simple

Interpretability applies to:

(1) Model:

Tree structure easy to visualize & understand

(2) *Predictions*:

Model output must be simple

(3) Decision process:

Easily audit decision making process

Domain X, codomain Y
PDF ρ over X × Y

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

- ▶ Domain X, codomain Y
- ▶ PDF ρ over $X \times Y$
- Sample (x, y) of m points drawn with density ρ

- ▶ Domain X, codomain Y
- ▶ PDF ρ over $X \times Y$
- Sample (x, y) of m points drawn with density ρ
- \blacktriangleright Condition on query $oldsymbol{q} \in \mathcal{X}$
- Estimate $\hat{\rho}(\cdot | q) \approx \rho(\cdot | q)$

- ▶ Domain X, codomain Y
- ▶ PDF ρ over $X \times Y$
- Sample (x, y) of m points drawn with density ρ
- ▶ Condition on query $q \in \mathcal{X}$
- Estimate $\hat{\rho}(\cdot \mid q) \approx \rho(\cdot \mid q)$
- Decision trees: Fit PDF $\hat{\rho}$ to leaf $\ell \ni q$

Supervised Learning: for any $oldsymbol{q} \in \mathcal{X}$, predict statistics of $oldsymbol{
ho}(\,\cdot\,|\,oldsymbol{q})$

Supervised Learning: for any $q \in \mathcal{X}$, predict statistics of $oldsymbol{ ho}(\cdot q)$				
Prediction Type			on Type	
		Summary	Distribution	
v	Discrete	Hard Classification $\underset{y}{\operatorname{argmax}} \mathbb{P}(y \boldsymbol{q})$	Soft Classification $\mathbb{P}(\cdot oldsymbol{q})$	
•	Continuous	$\frac{\mathbb{R} \text{egression}}{\mathbb{E} \begin{bmatrix} y x = q \end{bmatrix}}$	$\mathcal{CDE} \ ho(\cdot \mid oldsymbol{q})$	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Supervised Learning: for any $oldsymbol{q}\in\mathcal{X}$, predict statistics of $oldsymbol{ ho}(\cdot oldsymbol{q})$				
Prediction Type				
		Summary	Distribution	
y	Discrete	Hard Classification $\underset{y}{\operatorname{argmax}} \mathbb{P}(y \mid \boldsymbol{q})$	$ig $ Soft Classification $\mathbb{P}(\cdot oldsymbol{q})$	
	Continuous	$\frac{\mathbb{R} \text{e} \text{gression}}{\mathbb{E} \left[y x = q \right]}$	$ ho(\cdot \mid oldsymbol{q})$	

- 11

- Regression is a lossy process
 - Only estimate average outcome

Supervised Learning: for any $oldsymbol{q}\in\mathcal{X}$, predict statistics of $oldsymbol{ ho}(\cdot oldsymbol{q})$					
Prediction Type					
		Summary	Distribution		
Discusto		Hard Classification	Soft Classification		
v	Discrete	$rgmax_y \mathbb{P}(y \mid oldsymbol{q})$	$\mathbb{P}(\cdot oldsymbol{q})$		
Continuous		Regression	CDE		
	Continuous	$\mathbb{E}_{(x,y)\sim\boldsymbol{\rho}}[y x=\boldsymbol{q}]$	$ ho(\cdot oldsymbol{q})$		
► Regression is a lossy process					
Only estimate average outcome			The states		

 \checkmark

► Want to reason about *many possibilities*

Supervised Learning: for any $q \in \mathcal{X}$, predict statistics of $oldsymbol{ ho}(\cdot q)$					
	Prediction Type				
	Summary	Summary Distribution			
\mathcal{Y} Discrete	Hard Classification $\underset{y}{\operatorname{argmax}} \mathbb{P}(y \boldsymbol{q})$	$\left \begin{array}{c} Soft \ Classification \\ \mathbb{P}(\cdot \boldsymbol{q}) \end{array} \right $			
Continuous	$\frac{\mathbb{R} \text{egression}}{\mathbb{E} \begin{bmatrix} y x = q \end{bmatrix}}$	$ ho (\cdot \mid oldsymbol{q})$	-		
Regression is a lossy process					
 Only estimate average outcome Want to reason about many possibilities 					
CDE quantifies uncertainty due to noise or ambiguity					

- Generalizes soft classification to arbitrary $\mathcal Y$
- Postprocess to estimate mean, median, ...

CDE with decision trees:

- ► Tree splits X into *disjoint cover* (leaves)
- \blacktriangleright Estimate distribution over $\mathcal Y$ at each leaf ℓ

CDE with decision trees:

- ► Tree splits X into *disjoint cover* (leaves)
- Estimate distribution over $\mathcal Y$ at each leaf ℓ

Fitting Labels at $\boldsymbol{\ell}$

0 000 0 0 000 0 0 0

CDE with decision trees:

- ► Tree splits X into *disjoint cover* (leaves)
- Estimate distribution over $\mathcal Y$ at each leaf ℓ
- ► Parametric CDE trees (CADET)
 - Quickly converge to parametric approximation
 - Learn good splits with small samples
 - Simple predictions, understood at a glance

Fitting Labels at ℓ

0 000 0 0 000 0 0 0

CDE with decision trees:

- ► Tree splits X into *disjoint cover* (leaves)
- \blacktriangleright Estimate distribution over $\mathcal Y$ at each leaf ℓ
- ► Parametric CDE trees (CADET)
 - Quickly converge to parametric approximation
 - Learn good splits with small samples
 - Simple predictions, understood at a glance

Fitting Labels at ℓ — Gaussian (Parametric)

0 000 0 0 000 0 0 0

CDE with decision trees:

- ► Tree splits X into *disjoint cover* (leaves)
- Estimate distribution over $\mathcal Y$ at each leaf ℓ
- ► Parametric CDE trees (CADET)
 - Quickly converge to parametric approximation
 - Learn good splits with small samples
 - Simple predictions, understood at a glance
- Nonparametric CDE trees
 - Asymptotic consistency
 - Eventually get it right
 - Poor sample complexity
 - Must fit distribution at each leaf
 - More susceptible to overfitting

CDE with decision trees:

- ► Tree splits X into *disjoint cover* (leaves)
- \blacktriangleright Estimate distribution over ${\mathcal Y}$ at each leaf ℓ
- ▶ Parametric CDE trees (CADET)
 - Quickly converge to parametric approximation
 - Learn good splits with small samples
 - Simple predictions, understood at a glance

Nonparametric CDE trees

- Asymptotic consistency
 - Eventually get it right
- Poor sample complexity
 - Must fit distribution at each leaf
 - More susceptible to *overfitting*

CDE with decision trees:

- ► Tree splits X into *disjoint cover* (leaves)
- \blacktriangleright Estimate distribution over $\mathcal Y$ at each leaf ℓ
- ▶ Parametric CDE trees (CADET)
 - Quickly converge to parametric approximation
 - Learn good splits with small samples
 - Simple predictions, understood at a glance

Nonparametric CDE trees

- Asymptotic consistency
 - Eventually get it right
- Poor sample complexity
 - Must fit distribution at each leaf
 - More susceptible to *overfitting*

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Sac

Fitting optimal tree to (x, y) is NP-hard
 Standard heuristic: impurity reduction

 (1) Start with a singleton tree, and impurity criterion I(·)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- ▶ I(y) measures *disagreement* among y
- MSE, entropy, GINI, ...

▶ Fitting optimal tree to (x, y) is NP-hard Standard heuristic: impurity reduction

 (1) Start with a singleton tree, and impurity criterion I(·)
 ▶ I(y) measures disagreement among y

MSE, entropy, GINI, ...

(2) Select split of (x, y) into (x_L, y_L) and (x_R, y_R) to maximize *impurity reduction*:

 $(m_L + m_R) \operatorname{I}(\boldsymbol{y}) - (m_L \operatorname{I}(\boldsymbol{y}_L) + m_R \operatorname{I}(\boldsymbol{y}_R))$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

 ▶ Fitting optimal tree to (x, y) is NP-hard Standard heuristic: impurity reduction

 (1) Start with a singleton tree, and impurity criterion I(·)
 ▶ I(y) measures disagreement among y

- MSE, entropy, GINI, ...
- (2) Select split of (x, y) into (x_L, y_L) and (x_R, y_R) to maximize *impurity reduction*:

$$(m_L + m_R) \operatorname{I}(\boldsymbol{y}) - (m_L \operatorname{I}(\boldsymbol{y}_L) + m_R \operatorname{I}(\boldsymbol{y}_R))$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(3) Repeat until termination condition is met

Maximum depth, minimum samples per leaf, ...

Fitting optimal tree to (x, y) is NP-hard
 Standard heuristic: impurity reduction

 (1) Start with a singleton tree, and impurity criterion I(·)

- I(y) measures *disagreement* among y
- MSE, entropy, GINI, ...
- (2) Select split of (x, y) into (x_L, y_L) and (x_R, y_R) to maximize *impurity reduction*:

$$\left(m_L+m_R
ight)\mathrm{I}(oldsymbol{y})-\left(m_L\,\mathrm{I}(oldsymbol{y}_L)+m_R\,\mathrm{I}(oldsymbol{y}_R)
ight)$$

(3) Repeat until termination condition is met

- Maximum depth, minimum samples per leaf, ...
- lacksimLower impurity \implies leaf label more accurately describes y

CADET Trees

 $\blacktriangleright \text{ Hyperparameter: } parametric \ distribution \ family \ \mathcal{F} \ \text{over} \ \mathcal{Y}$

▶ All CADET predictions (distributions) belong to ${\cal F}$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

• For this talk, \mathcal{F} in *exponential class*

CADET Trees

 $\blacktriangleright \text{ Hyperparameter: } parametric \ distribution \ family \ \mathcal{F} \ \text{over} \ \mathcal{Y}$

- ▶ All CADET predictions (distributions) belong to ${\cal F}$
- For this talk, \mathcal{F} in *exponential class*

• Given query point q, CADET trees

(1) Find the leaf that contains q, with training labels y

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(2) Return $MLE_{\mathcal{F}}(\boldsymbol{y})$

$\operatorname{CADET}\,\mathsf{Trees}$

 $\blacktriangleright \text{ Hyperparameter: } parametric \ distribution \ family \ \mathcal{F} \ \text{over} \ \mathcal{Y}$

- ▶ All CADET predictions (distributions) belong to ${\cal F}$
- For this talk, \mathcal{F} in *exponential class*
- Given query point q, CADET trees

(1) Find the leaf that contains q, with training labels $oldsymbol{y}$

(2) Return $MLE_{\mathcal{F}}(\boldsymbol{y})$

CADET trees optimize cross entropy impurity

• Evaluate CDE with cross entropy loss $\ell_{\mathsf{CE}}(y \mid \hat{\boldsymbol{\rho}}) \doteq -\ln \hat{\boldsymbol{\rho}}(y)$

• Cross entropy impurity
$$I_{\mathcal{F}}(\boldsymbol{y}) \doteq \frac{1}{m} \sum_{i=1}^{m} \ell_{\mathsf{CE}}(\boldsymbol{y}_i | \operatorname{MLE}(\boldsymbol{y}; \mathcal{F}))$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

CADET Trees

 $\blacktriangleright \text{ Hyperparameter: } parametric \ distribution \ family \ \mathcal{F} \ \text{over} \ \mathcal{Y}$

- ▶ All CADET predictions (distributions) belong to ${\cal F}$
- For this talk, \mathcal{F} in *exponential class*
- Given query point q, CADET trees

(1) Find the leaf that contains q, with training labels $oldsymbol{y}$

- (2) Return $MLE_{\mathcal{F}}(\boldsymbol{y})$
- CADET trees optimize cross entropy impurity
 - Evaluate CDE with cross entropy loss $\ell_{\mathsf{CE}}(y \mid \hat{\boldsymbol{\rho}}) \doteq -\ln \hat{\boldsymbol{\rho}}(y)$

• Cross entropy impurity
$$I_{\mathcal{F}}(\boldsymbol{y}) \doteq \frac{1}{m} \sum_{i=1}^{m} \ell_{\mathsf{CE}}(\boldsymbol{y}_i | \operatorname{MLE}(\boldsymbol{y}; \mathcal{F}))$$

- ► CADET organizes computation such that:
 - Evaluating impurity reduction requires constant work
 - Leaves require constant storage

Cross Entropy Impurity: $I_{\mathcal{F}}(\boldsymbol{y}) \doteq \frac{1}{m} \sum_{i=1}^{m} \ell_{\mathsf{CE}}(\boldsymbol{y}_i | \operatorname{MLE}(\boldsymbol{y}; \mathcal{F}))$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(1) Given training $points \ \boldsymbol{x}_{i=1}^m \in \mathbb{R}^m \text{ (x axis)}$ $labels \ \boldsymbol{y}_{i=1}^m \in \mathbb{R}^m \text{ (y axis)}$

Cross Entropy Impurity: $I_{\mathcal{F}}(\boldsymbol{y}) \doteq \frac{1}{m} \sum_{i=1}^{m} \ell_{\mathsf{CE}}(\boldsymbol{y}_i | \operatorname{MLE}(\boldsymbol{y}; \mathcal{F}))$

ò

0

Cross Entropy Impurity: $I_{\mathcal{F}}(\boldsymbol{y}) \doteq \frac{1}{m} \sum_{i=1}^{m} \ell_{\mathsf{CE}}(\boldsymbol{y}_i | \operatorname{MLE}(\boldsymbol{y}; \mathcal{F}))$

0

(1) Given training (1) Consider split y_L , y_R points $x_{i=1}^m \in \mathbb{R}^m$ (x axis) labels $y_{i=1}^m \in \mathbb{R}^m$ (y axis) (2) Evaluate possible splits

8

0

0

Cross Entropy Impurity: $I_{\mathcal{F}}(\boldsymbol{y}) \doteq \frac{1}{m} \sum_{i=1}^{m} \ell_{\mathsf{CE}}(\boldsymbol{y}_i | \operatorname{MLE}(\boldsymbol{y}; \mathcal{F}))$ 00 o 🕨 ၀ 00 0 00 0 (1) Given training (1) Consider split y_L , y_R points $x_{i=1}^m \in \mathbb{R}^m$ (x axis) (2) Fit $\mathrm{MLE}_{\mathcal{F}}(y_L)$, $\mathrm{MLE}_{\mathcal{F}}(y_R)$ labels $\boldsymbol{y}_{i-1}^m \in \mathbb{R}^m$ (y axis) (2) Evaluate possible splits

Cross Entropy Impurity: $I_{\mathcal{F}}(\boldsymbol{y}) \doteq \frac{1}{m} \sum_{i=1}^{m} \ell_{\mathsf{CE}}(\boldsymbol{y}_i | \operatorname{MLE}(\boldsymbol{y}; \mathcal{F}))$ 00 o 🕨 。 。, 8 0 00 0 (1) Given training (1) Consider split y_L , y_R points $\boldsymbol{x}_{i=1}^m \in \mathbb{R}^m$ (x axis) (2) Fit $\mathrm{MLE}_{\mathcal{F}}(\boldsymbol{y}_L)$, $\mathrm{MLE}_{\mathcal{F}}(\boldsymbol{y}_R)$ labels $oldsymbol{y}_{i=1}^{m} \in \mathbb{R}^{m}$ (y axis) (3) $\mathrm{I}_{\mathcal{F}}(oldsymbol{y}_{L})$: low (2) Evaluate possible splits $I_{\mathcal{F}}(\boldsymbol{y}_R)$: high

Cross Entropy Impurity: $I_{\mathcal{F}}(\boldsymbol{y}) \doteq \frac{1}{m} \sum_{i=1}^{m} \ell_{\mathsf{CE}}(\boldsymbol{y}_i | \mathrm{MLE}(\boldsymbol{y}; \mathcal{F}))$ 00 8 0 00 0 (1) Now consider y'_L , y'_R (1) Given training (1) Consider split y_L , y_R points $x_{i=1}^m \in \mathbb{R}^m$ (x axis) (2) Fit $\mathrm{MLE}_{\mathcal{F}}(y_L)$, $\mathrm{MLE}_{\mathcal{F}}(y_R)$ (2) Fit $\mathrm{MLE}_{\mathcal{F}}(y'_L)$, $\mathrm{MLE}_{\mathcal{F}}(y'_R)$ labels $oldsymbol{y}_{i=1}^{m} \in \mathbb{R}^{m}$ (y axis) (3) $\mathrm{I}_{\mathcal{F}}(oldsymbol{y}_{L})$: low (3) $I_{\mathcal{F}}(\boldsymbol{y}'_L)$: same (2) Evaluate possible splits $I_{\mathcal{F}}(\boldsymbol{y}_R)$: high $I_{\mathcal{F}}(\boldsymbol{y}_{R}')$: lower

Sac

 CADET sounds complicated, why not just use $I_{\mathrm{MSE}}(\cdot)?$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- \blacktriangleright Consider maximizing $I_{\rm MSE}(\cdot)\text{-reduction}$
 - Only sensitive to changes in *expectation*
 - ► Insensitive to changes in *variance*
 - Problem even for Gaussian family

- \blacktriangleright Consider maximizing $I_{\rm MSE}(\cdot)\text{-reduction}$
 - Only sensitive to changes in *expectation*
 - ► Insensitive to changes in *variance*
 - A Problem even for Gaussian family

- \blacktriangleright Consider maximizing $I_{\rm MSE}(\cdot)\text{-reduction}$
 - Only sensitive to changes in *expectation*
 - Insensitive to changes in variance
 - A Problem even for Gaussian family

- \blacktriangleright Consider maximizing $I_{\rm MSE}(\cdot)\text{-reduction}$
 - Only sensitive to changes in *expectation*
 - Insensitive to changes in variance
 - A Problem even for Gaussian family

- \blacktriangleright Consider maximizing $I_{\rm MSE}(\cdot)\text{-reduction}$
 - Only sensitive to changes in *expectation* Insensitive to changes in *variance*
 - ▶ ▲ Problem even for Gaussian family
 - $I_{MSE}(\cdot)$ undefined for $\mathcal{Y} \neq \mathbb{R}^d$

- \blacktriangleright Consider maximizing $I_{\rm MSE}(\cdot)\text{-reduction}$
 - Only sensitive to changes in *expectation* Insensitive to changes in *variance*
 - Problem even for Gaussian family
 - $I_{MSE}(\cdot)$ undefined for $\mathcal{Y} \neq \mathbb{R}^d$
- Takeaway: $I_{\mathcal{F}}(\cdot)$ depends on \mathcal{F}
 - "Pick the splits that improve the fits"

 \blacktriangleright A leaf needs training labels y to select splits in training and answer queries

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- ► CART summarize y with class frequencies or means
- "Incremental updates" make split search fast
- ▶ CADET needs $I_{\mathcal{F}}(\boldsymbol{y})$ to train and $MLE_{\mathcal{F}}(\boldsymbol{y})$ to query

- \blacktriangleright A leaf needs training labels y to select splits in training and answer queries
 - CART summarize y with class frequencies or means
 - "Incremental updates" make split search fast
 - ▶ CADET needs $I_{\mathcal{F}}(\boldsymbol{y})$ to train and $MLE_{\mathcal{F}}(\boldsymbol{y})$ to query
- Sufficient statistics $w^{(m)}(y)$ w.r.t. \mathcal{F} summarize y in \mathcal{Y}^m
 - Compute $MLE_{\mathcal{F}}(\boldsymbol{y})$ and minimize $I_{\mathcal{F}}(\boldsymbol{y})$ from $w^{(m)}(\boldsymbol{y})$

- \blacktriangleright A leaf needs training labels y to select splits in training and answer queries
 - CART summarize y with class frequencies or means
 - "Incremental updates" make split search fast
 - ▶ CADET needs $I_{\mathcal{F}}(\boldsymbol{y})$ to train and $MLE_{\mathcal{F}}(\boldsymbol{y})$ to query
- Sufficient statistics $w^{(m)}(y)$ w.r.t. $\mathcal F$ summarize y in $\mathcal Y^m$

• Compute $\mathrm{MLE}_\mathcal{F}(\boldsymbol{y})$ and minimize $\mathrm{I}_\mathcal{F}(\boldsymbol{y})$ from $\mathsf{w}^{(m)}(\boldsymbol{y})$

Family ${\cal F}$	Suff. Stat. $w^{(m)}(\boldsymbol{y})$	Log Density $\ln oldsymbol{ ho}(y)$
Gaussian (μ, σ^2)	$\sum_{i=1}^m oldsymbol{y}_i, \; \sum_{i=1}^m oldsymbol{y}_i^2$	$-\frac{1}{2}\ln(2\pi\sigma^2) - \frac{y^2 - y\mu + \mu^2}{2\sigma^2}$

- \blacktriangleright A leaf needs training labels y to select splits in training and answer queries
 - CART summarize y with class frequencies or means
 - "Incremental updates" make split search fast
 - ▶ CADET needs $I_{\mathcal{F}}(\boldsymbol{y})$ to train and $MLE_{\mathcal{F}}(\boldsymbol{y})$ to query
- Sufficient statistics $w^{(m)}(y)$ w.r.t. $\mathcal F$ summarize y in $\mathcal Y^m$

• Compute $MLE_{\mathcal{F}}(\boldsymbol{y})$ and minimize $I_{\mathcal{F}}(\boldsymbol{y})$ from $w^{(m)}(\boldsymbol{y})$

Family \mathcal{F}	Suff. Stat. $w^{(m)}(\boldsymbol{y})$	Log Density $\ln oldsymbol{ ho}(y)$
Gaussian (μ, σ^2)	$\sum_{m=1}^{m}oldsymbol{y}_i,\sum_{m=1}^{m}oldsymbol{y}_i^2$	$-\frac{1}{2}\ln(2\pi\sigma^2) - \frac{y^2 - y\mu + \mu^2}{2\sigma^2}$
$\operatorname{Gamma}(\alpha,\beta)$	$\sum_{i=1}^m oldsymbol{y}_i, \; \sum_{i=1}^m \ln(oldsymbol{y}_i)$	$\alpha \ln(\beta) - \ln \Gamma(\alpha) - y + (\alpha - 1) \ln(y)$

- \blacktriangleright A leaf needs training labels y to select splits in training and answer queries
 - CART summarize y with class frequencies or means
 - "Incremental updates" make split search fast
 - ▶ CADET needs $I_{\mathcal{F}}(\boldsymbol{y})$ to train and $MLE_{\mathcal{F}}(\boldsymbol{y})$ to query
- Sufficient statistics $w^{(m)}(y)$ w.r.t. $\mathcal F$ summarize y in $\mathcal Y^m$
 - Compute $\mathrm{MLE}_\mathcal{F}(\boldsymbol{y})$ and minimize $\mathrm{I}_\mathcal{F}(\boldsymbol{y})$ from $\mathsf{w}^{(m)}(\boldsymbol{y})$

Family \mathcal{F}	Suff. Stat. $w^{(m)}(\boldsymbol{y})$	Log Density $\ln oldsymbol{ ho}(y)$
Gaussian (μ, σ^2)	$\sum_{i=1}^m oldsymbol{y}_i, \sum_{i=1}^m oldsymbol{y}_i^2$	$-\frac{1}{2}\ln(2\pi\sigma^2) - \frac{y^2 - y\mu + \mu^2}{2\sigma^2}$
$\operatorname{Gamma}(lpha,eta)$	$\sum_{i=1}^m oldsymbol{y}_i, \; \sum_{i=1}^m \ln(oldsymbol{y}_i)$	$\alpha \ln(\beta) - \ln \Gamma(\alpha) - y + (\alpha - 1) \ln(y)$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• Always exist $w(\cdot)$ for \mathcal{F} in the *exponential class* s.t.

$$\mathsf{w}^{(m_L+m_R)}(\boldsymbol{y}_L \circ \boldsymbol{y}_R) \doteq \mathsf{w}^{(m_L)}(\boldsymbol{y}_L) + \mathsf{w}^{(m_R)}(\boldsymbol{y}_2)$$

- \blacktriangleright A leaf needs training labels y to select splits in training and answer queries
 - CART summarize y with class frequencies or means
 - "Incremental updates" make split search fast
 - ▶ CADET needs $I_{\mathcal{F}}(\boldsymbol{y})$ to train and $MLE_{\mathcal{F}}(\boldsymbol{y})$ to query
- Sufficient statistics $w^{(m)}(y)$ w.r.t. $\mathcal F$ summarize y in $\mathcal Y^m$
 - Compute $\mathrm{MLE}_\mathcal{F}(\boldsymbol{y})$ and minimize $\mathrm{I}_\mathcal{F}(\boldsymbol{y})$ from $\mathsf{w}^{(m)}(\boldsymbol{y})$

Family \mathcal{F}	Suff. Stat. $w^{(m)}(\boldsymbol{y})$	Log Density $\ln oldsymbol{ ho}(y)$
Gaussian (μ, σ^2)	$\sum_{m=1}^{m}oldsymbol{y}_i,\sum_{m=1}^{m}oldsymbol{y}_i^2$	$-\frac{1}{2}\ln(2\pi\sigma^2) - \frac{y^2 - y\mu + \mu^2}{2\sigma^2}$
$\operatorname{Gamma}(\alpha,\beta)$	$\sum_{i=1}^m oldsymbol{y}_i, \; \sum_{i=1}^m \ln(oldsymbol{y}_i)$	$\alpha \ln(\beta) - \ln \Gamma(\alpha) - y + (\alpha - 1) \ln(y)$

• Always exist $w(\cdot)$ for \mathcal{F} in the *exponential class* s.t.

$$\mathsf{w}^{(m_L+m_R)}(\boldsymbol{y}_L\circ\boldsymbol{y}_R)\doteq\mathsf{w}^{(m_L)}(\boldsymbol{y}_L)+\mathsf{w}^{(m_R)}(\boldsymbol{y}_2)$$

Time to compute impurity reduction:

• With $w(\cdot)$: $\mathcal{O}(1)$ amortized time

• Without $w(\cdot): \mathcal{O}(\underline{m})$ time

 \blacktriangleright Cross-entropy impurity criterion $I_{\mathcal{F}}(\cdot)$ tailored to $\mathcal F$

 $\begin{array}{c|c} \bullet & \text{Cross-entropy impurity criterion } I_{\mathcal{F}}(\cdot) \text{ tailored to } \mathcal{F} \\ \hline & \mathcal{F} & \mid I_{\mathcal{F}}(\boldsymbol{y}) \equiv & \text{Tree Model} \\ \hline & \text{GAUSSIAN}(\cdot, 1) & \mid I_{\text{MSE}}(\boldsymbol{y}) & \text{Regression Tree} \end{array}$

Cross-entropy impurity criterion $\mathrm{I}_\mathcal{F}(\cdot)$ tailored to \mathcal{F}			
\mathcal{F}	$I_{\mathcal{F}}(\boldsymbol{y})\equiv$	Tree Model	
$Gaussian(\cdot, 1)$	$\mathrm{I}_{\mathrm{MSE}}(oldsymbol{y})$	Regression Tree	
$\operatorname{Categorical}(\cdot)$	$\mathrm{I}_\mathrm{H}(oldsymbol{y})$	Information-Gain Tree	

Cross-entropy impurity criterion $\mathrm{I}_\mathcal{F}(\cdot)$ tailored to \mathcal{F}			
\mathcal{F}	$I_{\mathcal{F}}(\boldsymbol{y})\equiv$	Tree Model	
$\begin{array}{c} \text{Gaussian}(\cdot,1) \\ \text{Categorical}(\cdot) \end{array}$	$egin{array}{ll} \mathrm{I}_{\mathrm{MSE}}(oldsymbol{y})\ \mathrm{I}_{\mathrm{H}}(oldsymbol{y}) \end{array}$	Regression Tree Information-Gain Tree	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

► We've reconstructed two models from the 80s...

 $\begin{array}{c|c} \bullet & \begin{array}{c} \text{Cross-entropy impurity criterion } I_{\mathcal{F}}(\cdot) \text{ tailored to } \mathcal{F} \\ \hline & \mathcal{F} & \mid I_{\mathcal{F}}(\boldsymbol{y}) \equiv & \text{Tree Model} \\ \hline & \\ \hline & \\ & \text{GAUSSIAN}(\cdot,1) & \mid I_{\text{MSE}}(\boldsymbol{y}) & \text{Regression Tree} \\ & \\ & \text{CATEGORICAL}(\cdot) & \mid I_{\text{H}}(\boldsymbol{y}) & \text{Information-Gain Tree} \end{array} \end{array}$

- ► We've reconstructed two models from the 80s...
- Two underlying philosophies for split selection
- (1) Maximum likelihood, maximize sum-log-likelihood of \boldsymbol{y}
- (2) Minimax entropy, minimize uncertainty of predictions

$$\begin{split} \mathrm{I}_{\mathcal{F}}(\boldsymbol{y}) &= \mathrm{H}\big(\boldsymbol{y}, \mathrm{MLE}_{\mathcal{F}}(\boldsymbol{y})\big) \\ \mathrm{I}_{\mathrm{H},\mathcal{F}}(\boldsymbol{y}) &= \mathrm{H}(\boldsymbol{y}) \end{split}$$

・ロット 御マ キョット 中国 うくの

- We've reconstructed two models from the 80s...
- Two underlying philosophies for split selection
- Maximum likelihood, maximize sum-log-likelihood of y
 Minimax entropy, minimize uncertainty of predictions
- ▶ Lemma 1: conditions on \mathcal{F} under which $I_{\mathcal{F}}(\cdot) = I_{H,\mathcal{F}}(\cdot)$

$$\begin{split} \mathrm{I}_{\mathcal{F}}(\boldsymbol{y}) &= \mathrm{H}\big(\boldsymbol{y}, \mathrm{MLE}_{\mathcal{F}}(\boldsymbol{y})\big) \\ \mathrm{I}_{\mathrm{H},\mathcal{F}}(\boldsymbol{y}) &= \mathrm{H}(\boldsymbol{y}) \end{split}$$

Visualizing Gaussian-CADET Forests

Visualizing Gaussian- CADET Forests

Visualizing Gamma- CADET Forests

900

Visualizing Gamma-CADET Forests

 $\mathcal{O} \land \mathcal{O}$

► CADET: simple, interpretable, parametric CDE trees

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Nonparametric methods uninterpretable
- Efficient training, query, and storage costs with
 - Additive sufficient statistics
 - Efficiency matches CART
 - $\Omega(m)$ speedup over nonparametric CDE trees
- Generalize existing tree methods
 - Information-gain classification trees
 - MSE regression trees