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CaDET at a Glance

“Interpretable Parametric
Conditional-Density-Estimation”

(1) Conditional Density Estimation: predict distributions (not point-estimates)

(2) CaDET predicts parametric densities, e.g. Gaussian(1, 1) or Beta(3, 2)

(3) CaDET trees and predictions are interpretable

I Existing CDE tree methods
I High training, query, and storage costs
I Uninterpretable (non-parametric) estimates
I High sample complexity

I CaDET sacrifices representativeness for
I Efficient training, storage, and querying
I Easily understood parametric estimates
I Generalizability
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x1 < 3 x2 < 7

N (−4, 3.5)

N (0,1) N (0,2) N (1,1) N (1,2)
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Interpretability in CDE Trees

Interpretability applies to:
(1) Model:

Tree structure easy to visualize & understand

(2) Predictions:
Model output must be simple

(3) Decision process:
Easily audit decision making process
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What is Conditional Density Estimation?

I Domain X , codomain Y

I PDF ρ over X × Y
I Sample (x,y) of m points

drawn with density ρ

I Condition on query q ∈ X
I Estimate ρ̂(· | q) ≈ ρ(· | q)
I Decision trees:

Fit PDF ρ̂ to leaf ` 3 q

X →

↑
Y

q︸ ︷︷ ︸
`

ρ̂
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Why Conditional Density Estimation?

Supervised Learning: for any q ∈ X , predict statistics of ρ( · | q)

Prediction Type
Summary Distribution

Y
Discrete

Hard Classification Soft Classification
argmax

y
P(y | q) P( · | q)

Continuous

Regression CDE

E
(x,y)∼ρ

[ y |x = q] ρ( · | q)

I Regression is a lossy process
I Only estimate average outcome

I Want to reason about many possibilities

I CDE quantifies uncertainty due to noise or ambiguity
I Generalizes soft classification to arbitrary Y
I Postprocess to estimate mean, median, . . .
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Parametric vs Nonparametric CDE Trees

I CDE with decision trees:
I Tree splits X into disjoint cover (leaves)
I Estimate distribution over Y at each leaf `

I Parametric CDE trees (CaDET)
I Quickly converge to parametric approximation
I Learn good splits with small samples
I Simple predictions, understood at a glance

I Nonparametric CDE trees
I Asymptotic consistency

I Eventually get it right
I Poor sample complexity

I Must fit distribution at each leaf
I More susceptible to overfitting

Fitting Labels at `



Parametric vs Nonparametric CDE Trees

I CDE with decision trees:
I Tree splits X into disjoint cover (leaves)
I Estimate distribution over Y at each leaf `

I Parametric CDE trees (CaDET)
I Quickly converge to parametric approximation
I Learn good splits with small samples
I Simple predictions, understood at a glance

I Nonparametric CDE trees
I Asymptotic consistency

I Eventually get it right
I Poor sample complexity

I Must fit distribution at each leaf
I More susceptible to overfitting

Fitting Labels at `



Parametric vs Nonparametric CDE Trees

I CDE with decision trees:
I Tree splits X into disjoint cover (leaves)
I Estimate distribution over Y at each leaf `

I Parametric CDE trees (CaDET)
I Quickly converge to parametric approximation
I Learn good splits with small samples
I Simple predictions, understood at a glance

I Nonparametric CDE trees
I Asymptotic consistency

I Eventually get it right
I Poor sample complexity

I Must fit distribution at each leaf
I More susceptible to overfitting

Fitting Labels at `



Parametric vs Nonparametric CDE Trees

I CDE with decision trees:
I Tree splits X into disjoint cover (leaves)
I Estimate distribution over Y at each leaf `

I Parametric CDE trees (CaDET)
I Quickly converge to parametric approximation
I Learn good splits with small samples
I Simple predictions, understood at a glance

I Nonparametric CDE trees
I Asymptotic consistency

I Eventually get it right
I Poor sample complexity

I Must fit distribution at each leaf
I More susceptible to overfitting

Fitting Labels at `

Gaussian (Parametric)



Parametric vs Nonparametric CDE Trees

I CDE with decision trees:
I Tree splits X into disjoint cover (leaves)
I Estimate distribution over Y at each leaf `

I Parametric CDE trees (CaDET)
I Quickly converge to parametric approximation
I Learn good splits with small samples
I Simple predictions, understood at a glance

I Nonparametric CDE trees
I Asymptotic consistency

I Eventually get it right
I Poor sample complexity

I Must fit distribution at each leaf
I More susceptible to overfitting

Fitting Labels at `

Gaussian (Parametric)



Parametric vs Nonparametric CDE Trees

I CDE with decision trees:
I Tree splits X into disjoint cover (leaves)
I Estimate distribution over Y at each leaf `

I Parametric CDE trees (CaDET)
I Quickly converge to parametric approximation
I Learn good splits with small samples
I Simple predictions, understood at a glance

I Nonparametric CDE trees
I Asymptotic consistency

I Eventually get it right
I Poor sample complexity

I Must fit distribution at each leaf
I More susceptible to overfitting

Fitting Labels at `

Gaussian (Parametric)
KDE Components



Parametric vs Nonparametric CDE Trees

I CDE with decision trees:
I Tree splits X into disjoint cover (leaves)
I Estimate distribution over Y at each leaf `

I Parametric CDE trees (CaDET)
I Quickly converge to parametric approximation
I Learn good splits with small samples
I Simple predictions, understood at a glance

I Nonparametric CDE trees
I Asymptotic consistency

I Eventually get it right
I Poor sample complexity

I Must fit distribution at each leaf
I More susceptible to overfitting

Fitting Labels at `

Gaussian (Parametric)
KDE Components

KDE (Nonparametric)



What are Decision Trees Again?

I Fitting optimal tree to (x,y) is NP-hard
Standard heuristic: impurity reduction
(1) Start with a singleton tree, and impurity criterion I(·)

I I(y) measures disagreement among y
I MSE, entropy, GINI, . . .

(2) Select split of (x,y) into (xL,yL) and (xR,yR) to maximize impurity reduction:

(mL +mR) I(y)−
(
mL I(yL) +mR I(yR)

)
(3) Repeat until termination condition is met

I Maximum depth, minimum samples per leaf, . . .

I Lower impurity =⇒ leaf label more accurately describes y
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CaDET Trees

I Hyperparameter: parametric distribution family F over Y
I All CaDET predictions (distributions) belong to F
I For this talk, F in exponential class

I Given query point q, CaDET trees

(1) Find the leaf that contains q, with training labels y
(2) Return MLEF (y)

I CaDET trees optimize cross entropy impurity
I Evaluate CDE with cross entropy loss `CE(y | ρ̂)

.
= − ln ρ̂(y)

I Cross entropy impurity IF (y)
.
=

1

m

m∑
i=1

`CE
(
yi|MLE(y;F)

)
I CaDET organizes computation such that:

I Evaluating impurity reduction requires constant work
I Leaves require constant storage
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Training CaDET Trees

Cross Entropy Impurity: IF(y)
.
=

1

m

m∑
i=1

`CE

(
yi|MLE(y;F)

)

(1) Given training

points xm
i=1 ∈ Rm (x axis)

labels ym
i=1 ∈ Rm (y axis)

(2) Evaluate possible splits

(1) Consider split yL, yR

(2) Fit MLEF(yL),MLEF(yR)

(3) IF(yL) : low
IF(yR) : high

(1) Now consider y′
L, y′

R

(2) Fit MLEF(y
′
L), MLEF(y

′
R)

(3) IF(y
′
L) : same

IF(y
′
R) : lower
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Why CDE-Specific Impurity Criteria?

CaDET sounds complicated, why not just use IMSE(·)?

I Consider maximizing IMSE(·)-reduction
I Only sensitive to changes in expectation
I Insensitive to changes in variance
I Problem even for Gaussian family

I IMSE(·) undefined for Y 6= Rd

I Takeaway: IF(·) depends on F
I “Pick the splits that improve the fits”

IMSE IF
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Organizing Computation with Sufficient Statistics

I A leaf needs training labels y to select splits in training and answer queries
I CART summarize y with class frequencies or means
I “Incremental updates” make split search fast
I CaDET needs IF (y) to train and MLEF (y) to query

I Sufficient statistics w(m)(y) w.r.t. F summarize y in Ym

I Compute MLEF (y) and minimize IF (y) from w(m)(y)

Family F Suff. Stat. w(m)(y) Log Density lnρ(y)

Gaussian(µ, σ2)

m∑
i=1

yi,

m∑
i=1

y2i −1

2
ln(2πσ2)− y2 − 2yµ+ µ2

2σ2

Gamma(α, β)

m∑
i=1

yi,

m∑
i=1

ln(yi) α ln(β)− ln Γ(α)− βy + (α− 1)ln(y)

I Always exist w(·) for F in the exponential class s.t.

w(mL+mR)(yL ◦ yR)
.
= w(mL)(yL) + w(mR)(y2)

I Time to compute impurity reduction:
I With w(·): O(1) amortized time I Without w(·): O(m) time
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CaDET as a Unifying Framework

I Cross-entropy impurity criterion IF(·) tailored to F

F IF(y) ≡ Tree Model

Gaussian(·, 1) IMSE(y) Regression Tree
Categorical(·) IH(y) Information-Gain Tree

I We’ve reconstructed two models from the 80s. . .

I Two underlying philosophies for split selection

(1) Maximum likelihood, maximize sum-log-likelihood of y IF (y) = H
(
y,MLEF (y)

)
(2) Minimax entropy, minimize uncertainty of predictions IH,F (y) = H(y)

I Lemma 1: conditions on F under which IF(·) = IH,F(·)
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Visualizing Gamma-CaDET Forests
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Visualizing Gamma-CaDET Forests
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A Brief Recapitulation

I CaDET: simple, interpretable, parametric CDE trees
I Nonparametric methods uninterpretable

I Efficient training, query, and storage costs with
I Additive sufficient statistics
I Efficiency matches CART
I Ω(m) speedup over nonparametric CDE trees

I Generalize existing tree methods
I Information-gain classification trees
I MSE regression trees


