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CADET at a Glance

“Interpretable Parametric
Conditional-Density-Estimation”

(1) Conditional Density Estimation: predict distributions (not point-estimates)
(2) CADET predicts parametric densities, e.g. GAUSSIAN(1, 1) or BETA(3, 2)
(3) CADET trees and predictions are interpretable
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(1) Conditional Density Estimation: predict distributions (not point-estimates)
(2) CADET predicts parametric densities, e.g. GAUSSIAN(1, 1) or BETA(3, 2)
(3) CADET trees and predictions are interpretable

» Existing CDE tree methods

» High training, query, and storage costs
» Uninterpretable (non-parametric) estimates
» High sample complexity
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CADET at a Glance

“Interpretable Parametric
Conditional-Density-Estimation”

(1) Conditional Density Estimation: predict distributions (not point-estimates)
(2) CADET predicts parametric densities, e.g. GAUSSIAN(1, 1) or BETA(3, 2)
(3) CADET trees and predictions are interpretable

» Existing CDE tree methods

» High training, query, and storage costs
» Uninterpretable (non-parametric) estimates
» High sample complexity

» CADET sacrifices representativeness for

» Efficient training, storage, and querying
» Easily understood parametric estimates
P Generalizability
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Interpretability in CDE Trees

Interpretability applies to: i < 1

(1) Model: /O

Tree structure easy to visualize & understand r3 <4
T <3 T < 7
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Interpretability in CDE Trees

Interpretability applies to:

(1) Model:
Tree structure easy to visualize & understand

(2) Predictions:
Model output must be simple
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Interpretability in CDE Trees

Interpretability applies to: i < 1
(1) Model: /
Tree structure easy to visualize & understand r3 <4
(2) Predictions: \
Model output must be simple To <7
(3) Decision process: l

Easily audit decision making process
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What is Conditional Density Estimation?

» Domain X, codomain )
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What is Conditional Density Estimation?

» Domain X, codomain Y
» PDF p over X x )Y

» Sample (xz,y) of m points
drawn with density p

» Condition on query g € X
> Estimate (- |q) = p(- | q)

» Decision trees:
Fit PDF p to leaf £ > q
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Supervised Learning: for any g € X, predict statistics of p(-|q)
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Why Conditional Density Estimation?

Supervised Learning: for any g € X, predict statistics of p(-|q)

Prediction Type

Summary | Distribution
Discrete Hard Classification | Soft Classification
¥ argmaxP(y | g) P(-|q)
. Regression CDE
Cont
oot E [yla=4q]| (‘]9

($,y)~p

P> Regression is a lossy process

» Only estimate average outcome
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Why Conditional Density Estimation?

Supervised Learning: for any g € X, predict statistics of p(-|q)

Prediction Type

Summary | Distribution
Discrete Hard Classification | Soft Classification
¥ argmaxP(y | g) P(-|q)
. Regression CDE
Continuous
MO Eyle=ql|  o(-la)
($,y)~p

22%

P> Regression is a lossy process

» Only estimate average outcome
> Want to reason about many possibilities 20\

» CDE quantifies uncertainty due to noise or ambiguity
» Generalizes soft classification to arbitrary )
P Postprocess to estimate mean, median, ...
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Parametric vs Nonparametric CDE Trees

» CDE with decision trees:

» Tree splits X' into disjoint cover (leaves)
» Estimate distribution over ) at each leaf £
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» Tree splits X' into disjoint cover (leaves)
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» Parametric CDE trees (CADET)
» Quickly converge to parametric approximation
P Learn good splits with small samples
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Fitting Labels at £

— Gaussian (Parametric)

» CDE with decision trees:

» Tree splits X' into disjoint cover (leaves)
» Estimate distribution over ) at each leaf £

» Parametric CDE trees (CADET)

» Quickly converge to parametric approximation
P Learn good splits with small samples
» Simple predictions, understood at a glance

» Nonparametric CDE trees
» Asymptotic consistency
» Eventually get it right
» Poor sample complexity

» Must fit distribution at each leaf
» More susceptible to overfitting
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» CDE with decision trees: Fitting Labels at £
» Tree splits X into disjoint cover (leaves) — Gaussian (Parametric)
» Estimate distribution over ) at each leaf ¢ ™ KDE Components
» Parametric CDE trees (CADET)
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Parametric vs Nonparametric CDE Trees

» CDE with decision trees: Fitting Labels at £
» Tree splits X into disjoint cover (leaves) — Gaussian (Parametric)
» Estimate distribution over ) at each leaf ¢ ™ KDE Component§
» Parametric CDE trees (CADET) — KDE (Nonparametric)

» Quickly converge to parametric approximation
P Learn good splits with small samples
» Simple predictions, understood at a glance

» Nonparametric CDE trees
» Asymptotic consistency
» Eventually get it right
» Poor sample complexity

» Must fit distribution at each leaf
» More susceptible to overfitting
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What are Decision Trees Again?

» Fitting optimal tree to (x,y) is NP-hard
Standard heuristic: impurity reduction
(1) Start with a singleton tree, and impurity criterion I(-)

> I(y) measures disagreement among y
» MSE, entropy, GINI, ...
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What are Decision Trees Again?

» Fitting optimal tree to (x,y) is NP-hard
Standard heuristic: impurity reduction
(1) Start with a singleton tree, and impurity criterion I(-)

> I(y) measures disagreement among y
» MSE, entropy, GINI, ...

(2) Select split of (x,y) into (x1,yr) and (xr,yr) to maximize impurity reduction:

(mp+mg)l(y) — (mL I(yr) +mrg I(yR))

(3) Repeat until termination condition is met
> Maximum depth, minimum samples per leaf, ...

» Lower impurity = leaf label more accurately describes y
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CADET Trees

» Hyperparameter: parametric distribution family F over )
» All CADET predictions (distributions) belong to F
» For this talk, F in exponential class

» Given query point g, CADET trees

(1) Find the leaf that contains g, with training labels y
(2) Return MLE£(y)

» CADET trees optimize cross entropy impurity
» Evaluate CDE with cross entropy loss (ce(y | p) = —In p(y)

1
» Cross entropy impurity 1r(y) = p” Z lce (yZ] MLE(y; ]:))
i=1

» CADET organizes computation such that:

» Evaluating impurity reduction requires constant work
» Leaves require constant storage
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Training CADET Trees
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(1) Given training

(1) Consider split y;, yr

labels y™, € R™ (y axis) (3)
(2) Evaluate possible splits

points ", € R™ (x axis) (2) Fit MLE£(y;), MLEx(yz) (2) Fit MLE#(y/,), MLE#(y/})

L7(yr) : high
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I]:(yL) : low

(3) Ix(y}) : same
Ir(y}y) : lower
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Why CDE-Specific Impurity Criteria?

1
CADET sounds complicated, why not just use Iyisg(+)? E o
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» Consider maximizing Iysg(+)-reduction 1 O
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Why CDE-Specific Impurity Criteria?

CADET sounds complicated, why not just use Iyisg(+)?

» Consider maximizing Iysg(+)-reduction
» Only sensitive to changes in expectation 0
» Insensitive to changes in variance

» A\ Problem even for Gaussian family o
» Tyse(-) undefined for ) # R?
» Takeaway: 1x(-) depends on F

> “Pick the splits that improve the fits" o
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» A leaf needs training labels y to select splits in training and answer queries
» CART summarize y with class frequencies or means
» ‘“Incremental updates” make split search fast
» CADET needs Iz(y) to train and MLE £ (y) to query
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Organizing Computation with Sufficient Statistics

» A leaf needs training labels y to select splits in training and answer queries
» CART summarize y with class frequencies or means
» ‘“Incremental updates” make split search fast
» CADET needs Iz(y) to train and MLE £ (y) to query

» Sufficient statistics w™ (y) w.r.t. F summarize y in Y™

» Compute MLE#(y) and minimize I (y) from w(™ (y)

Family F Suff. Stat. w(™(y) | Log Density In p(y)
m m 1 y2 A yu+u2
2 ) 2 - 2y o I T
GAUSSIAN(p, 0%) ;1 Yi, ;1 Y; 5 In(2m0°) 5,7

GAMMA (a, ) Zyi, Zln(yi) aln(f) —InT(a) — y+ (a— In(y)
i=1 i=1

> Always exist w(-) for F in the exponential class s.t.
w(meFme) (g0 yp) = w8 (1) 4+ wime) (y5)
» Time to compute impurity reduction:
» With w(-): O(1) amortized time » Without w(-): O(m) time



CADET as a Unifying Framework

» Cross-entropy impurity criterion Ix(-) tailored to F



CADET as a Unifying Framework

» Cross-entropy impurity criterion Iz(-) tailored to F
F | 1x(y) Tree Model

GAUSSIAN(-, 1) | Iuse(y) Regression Tree



CADET as a Unifying Framework

» Cross-entropy impurity criterion Iz(-) tailored to F
F | 1r(y) = Tree Model

GAUSSIAN(+, 1) | Iuse(y) Regression Tree
CATEGORICAL(-) | Ig(y)  Information-Gain Tree



CADET as a Unifying Framework

» Cross-entropy impurity criterion Iz(-) tailored to F
F | 1r(y) = Tree Model

GAUSSIAN(+, 1) | Iuse(y) Regression Tree
CATEGORICAL(-) | Ig(y)  Information-Gain Tree

» We've reconstructed two models from the 80s. ..



CADET as a Unifying Framework

» Cross-entropy impurity criterion Iz(-) tailored to F
F | 1r(y) = Tree Model

GAUSSIAN(+, 1) | Iuse(y) Regression Tree
CATEGORICAL(-) | Ig(y)  Information-Gain Tree

» We've reconstructed two models from the 80s. ..
» Two underlying philosophies for split selection

(1) Maximum likelihood, maximize sum-log-likelihood of y  1r(y) = H(y, MLEx(

(2) Minimax entropy, minimize uncertainty of predictions

Inr(y) =H

Yy

(

))

Yy

)



CADET as a Unifying Framework

» Cross-entropy impurity criterion Iz(-) tailored to F
F | 1r(y) = Tree Model

GAUSSIAN(+, 1) | Iuse(y) Regression Tree
CATEGORICAL(-) | Ig(y)  Information-Gain Tree

» We've reconstructed two models from the 80s. ..
» Two underlying philosophies for split selection

(1) Maximum likelihood, maximize sum-log-likelihood of y  1r(y) = H(y, MLEx(

(2) Minimax entropy, minimize uncertainty of predictions

» Lemma 1: conditions on F under which I(-) = Iy #(+)

Inr(y) =H
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Visualizing Gaussian-CADET Forests
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Visualizing Gamma-CADET Forests
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Visualizing Gamma-CADET Forests




A Brief Recapitulation

» CADET: simple, interpretable, parametric CDE trees
» Nonparametric methods uninterpretable
» Efficient training, query, and storage costs with
» Additive sufficient statistics
» Efficiency matches CART
» (m) speedup over nonparametric CDE trees
» Generalize existing tree methods
» Information-gain classification trees
» MSE regression trees



