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— Fairness and Overfitting — ——  Theoretical Restricted Hypothesis Classes —— — Example with Linear Regression —
. l
Given per-group samples (x,y) = z; € (X x V)™ from D™, Let g; = \/ 2m; s and 1; = 2R, (Lo H, D;) + €; e Take linear hypothesis class
assume hypothesis class H C X — ), loss function £: )’ x Y — R We (pessimistically) upper-bound the objective value (w.h.p.) B = {IB e R? |8, < 1}
e Subgroups have potentially different distributions Dy., oy ( .) e Sample (x;,y;) as e
A ) . JF1 ’ ] .
e Worst-case generalization error can be analyzed on a per-group basis, but: hl,%g_[ AA( R(hlv Zj)7 w) < hl,rglgt M — {j —; R(h D)) + e, x; ~ Unif([—1, 1]2) .
yi = x; - B + Unif([—1,1])
— There may too few samples to compute bounds for minority groups N
— Data from large groups may regularize overfitting to small groups and (optimistically) lower-bound the empirical malfare of all 2 € H (w.h.p.) e Plot values of 3 which realize each oo
o o . supremum in the empirical Rade-
e Our goal: Use majority data to bound minority overfitting AA(J |_> f{(h, Zj); w) N ji ( ) maCh(lar average for some Rademacher .
S ) j=1i R(h,D;) —mn; sample o
. { } e Points lie on either (the corner of) o
. - . - et H; = 1h € 1}, where the /1 constraint boundary of B or h
—— Setting: Malfare-based Fair Machine Learning —— the restricted hypothesis constraint 10 es o0 0s o
: , boundary of H,;
"\ {j#z REh7D~))— B I e {]#z Rghfjpj-))m- y ew r T v
Empirical per-group risk: J=  ~i) = Tl J= P ‘ \. y,
R, (h,z;) = ZE (), y;) Theorem 1. Assume as above; the following then hold: )
me X y N . ; i . k o o o o o
j=1 1. WZth pT’ObCLb?tlZ.ty at least 1 — 20 over choz.ce of z;, it holds that h € Hz . — Experlments wlth LOngtiC Regr85510n —
Choose a malfare function such as a power mean: 2. With probability at least 1 — 40 over choice of zi,
A (i = S w) Z“’ 57 R(h,D;) — R(h, z))| < 28, (Lo HI . D;) + ¢, . ) )
v ' \ y X = [—1,1]' h = argmin M (i — R(h, z;))
’ heH
p=1: w—w'ei.ghtedfri.skl minimization ——  Empirical Restricted Hypothesis Classes = —— Y=+l . |
— 00: manimaz fair learnin ) — . -
’ ’ B{sert|g), <15}  DnE) = gm 2 WLt el haiy)
j=1
Our problem is empirical malfare minimization: :
A . ok x ~ Unif (X
A ) TakeAm = 2R, (Lo H, 2;) + 2¢; (X) Data proportion True parameters
h = argminAA <Z — Ri(h); w) Set ’HZ = {h S 7’[}, where ]P(y — 1) — logistic(a: . /31 + g) Group 1 75% B; = 0.3
heH Group 2 | 20% B; =0.1
2i R(h. 2. Li R(W. 2. Group 3 | 5% B; = 0.2
. J M| 137 R(h, z;) < imtm|je J#1 R( ,,zy)
j=1i R(h,z;) —n: h'€H j=1i R(h', zi)+ 2e,
— RademaCher A’Uerages N Theorem 1. Assume as above; the following then hold: ) ) § _—— e
1. With probability at least 1 — 46 over choice of z;, it holds that h € H; C H,;. S -
2. With probability at least 1 — 66, it holds that L%’
7 A » ~ g 10°
e Rademacher averages R,,, (¢ o H,D;) bound risk generalization gap R(h,D;) — R(h, zi)| < 28m, (Lo Hi, 2i) + 2ei . E
— Suppose range r loss Em_“
— Supremum Deviation (SD) Bound: With probability at least 1 — 9: §10‘2-
, R . In % 2
Viel,...q: sup|Ri(h) — R@-(h)‘ <ei=2Rm (CoH, z) +r g .
heH 2m; 5 ’
e Can generalize this result to power-mean malfare § 10° 10° 10* 102 10° 10*
Training dataset size (log scale)
Sup AAp (Z — Rz(h), 'lU) S AAp (’l — Rz(h), ’UJ) ‘ S max Ei Group 1 e 2 o 3 Bound type - - Original hypothesis class bound — Restricted hypothesis class bound
heH 1€l,...,g X \_ Yy,
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