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Regularization and Fair Learning

» So far, we have analyzed learning over all of ©
» Learning is a random process, but usually we learn 6~ 6*

» Group fair learning: Data from other groups have a regularizing effect
» Do small groups benefit from large group data?
» Can we mathematically quantify the benefit of this regularization?

» For each group i: Analyze learning from z;, conditioned on zj;

> W.h.p. over z;: 0 ~ argmin M\ | j — {‘77&2 R;(0)
beo j=i Ri(0)
» Learning effectively occurs over a localized region
» Double-randomization technique [Cousins, Kumar, & Venkatasubramanian, AlStats 2024]
> Construct theoretical class using R;;(#) and R;(6)

> Bound theoretical class with empirical class using R;(6)
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Improved Bounds with Localization

P> Let's analyze fair learning from the perspective of group i
» Training sample z; is random, but we have z; for j # i

» Observed data z; and distribution D; determine 6 conditional distribution
» Define the localized hypothesis class:
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> Learning effectively occurs over ©() not ©
P(0go) <is
» Get per-group generalization bounds
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Synthetic Localized Logistic Regression Experiment
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Why Localize?

» Goal: Better understanding of overfitting and per-group risk
»> Make better decisions with the data we have
» Decide where to sample more data
» Global bounds are loose for small groups
> K, (lo0B,2z) € G) N ignores contributions of other groups
> Usually R,,, (£ 0 0, 2) < Ry, (L0 O, 2)
P Localization yields sharper generalization bounds
» Use majority data to bound minority overfitting
» Data from large groups regularizes overfitting to small groups
» Reveals an inherent tradeoff
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» Utilitarian: Relatively insensitive to minority groups

» Egalitarian: Highly sensitive to minority groups

» Localized bounds depend on objective sensitivity to each group's risk!
» Asymptotically measured by malfare gradient A = Vg M (R(@*))



