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♣ Fair machine learning considers multiple groups (x1:g,1:m,y1:g,1:m)
♣ We can handle each group individually
♦ Empirical utility maximization
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♣ What is the best classifier overall?
♦ Empirical welfare maximization

ĥ
.
= argmax

h∈H
W
(

Û(h;x1,y1), Û(h;x2,y2)
)

♣ Welfare functions encode social values
♦ Optimize a given welfare function
♦ Objectives specify tradeoffs!
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What is Welfare-Centric Fair Machine Learning?

♣ The power-mean for p ∈ R summarizes g values S1:g with weights w1:g as
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♣ Fair welfare requires p ≤ 1, extremes are interesting special cases
♦ p = 1 is weighted sum, a.k.a. utilitarian welfare, over groups (well-studied case)
♦ p = 0 is the Nash social welfare over groups
♦ p = −∞ limit is the minimum over groups (egalitarian or robust optimization)

♣ Power-means are:
1. Axiomatically Justified
2. Interpretable

Mp(S;w) units match S1:g
3. Stochastically Stable

(for p ∈ [−∞, 0) ∪ [1,∞])
−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4

Power-Mean p

Mp
(
(1, 2, 3); 1

3

)
Mp

(
(1, 2, 3)± 1

2
; 1
3

)

Utilitarian, Egalitarian, and the Power-Mean Welfare

Definition 1 (Hölder Continuity)
M(S;w) is Hölder continuous in S with respect to norm ‖·‖M if there exist some

1. scale λ ≥ 0, 2. power α ∈ (0, 1],
such that for all S,S ′, it holds that∣∣M(S;w)−M(S ′;w)

∣∣ ≤ λ
∥∥S − S ′∥∥αM .

♣ Such a function is λ-α-‖·‖M Hölder continuous.
♦ Bound the impact of small changes

♣ If α = 1, it is λ-‖·‖M Lipschitz continuous.
♦ Bound the impact of infinitessimal changes

ε-δ Limit
Continuity

λ-α Hölder
Continuity

λ Lipschitz
Continuity

A Hierarchy of Continuity Concepts
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Relative utility

Assuming unit range, power-means are:
1. p ≥ 1: 1-‖·‖∞ Lipschitz
2. p ∈ (0, 1): 1

p -p-‖·‖∞ Hölder
3. p = 0: 1-wmin-‖·‖∞ Hölder
4. p < 0: 1

|p|√wmin
-‖·‖∞ Lipschitz

The “difficult cases” occur as:
♣ p→ 0 ♣wmin → 0 for p < 1

Small-Scale Behavior of Power-Means
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♣ Axiomatic characterization of welfare functions
♦ Uniquely satisfied by Wp(·;w) for p ≤ 1

♣ Additional axioms further restrict p
♦ Continuity properties vary by region
♦ Impact on sample efficiency of learning

Axiomatic Characterization of Welfare Classes

Definition 2 (Fair-PAC Learning)
Suppose

1. hypothesis class H ⊆ X → Y ′

2. utility function U : Y ′ × Y → R0+

3. welfare class W ⊆ Rg
0+ → R0+

H is fair-PAC-learnable if there exists an algorithm A such that for any
1. distributions D1:g over (X × Y)
2. welfare function W(·;w) ∈ W

3. additive error ε > 0
4. failure probability δ ∈ (0, 1)

A can identify a hypothesis ĥ ∈ H such that
1. A has mW,H(ε, δ,W, g) sample complexity (per-group)
2. with probability at least 1− δ, ĥ obeys

W
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Learned model welfare
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Fair-PAC Learning

♣ Suppose that for hypothesis class H, with
a sample (x,y) of size mH(ε, δ), it holds

P
x,y

(
sup
h∈H

∣∣∣∣ED[` ◦ h]− Ê
x,y

[` ◦ h]
∣∣∣∣ > ε

)
< δ

♣ Many ways to show this for various H
♦ Vapnik-Chervonenkis dimension
♦ Rademacher averages
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♣ What does uniform convergence give us?
♦ Asymptotic consistency of empirical utility maximizer ĥ
♦ Finite-sample convergence rate bounds
♥ UC =⇒ PAC with sample complexity mH(

ε
2 , δ)

♣ By ε-δ limit continuity alone:
♦ Consistency of empirical welfare maximizer ĥ
♦ Finite-sample convergence rate bounds?
♥ Convergence rate depends on welfare function
♥ Asymptotic bounds in terms of ∇S?W(S?;w) for

welfare-maximal utility vector S?

♣ By how much does W(·;w) magnify error?
♦ Hölder continuity analysis
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Uniform Convergence and PAC-Learnability

Theorem 3 (Welfare Optimization Sample Complexity)
Suppose that for sample size mH(ε, δ), it holds that
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Then H is FPAC-learnable with sample complexity mW,H(ε, δ,W, g) ≤ mH
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g

)
.

♣ Sample complexity of ε-δ learning bounded objectives is usually mH(ε, δ) ∈ O
(

ln 1
δ

ε2

)
♣ Fair-learning the class of all weighted power-means is thus
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Worst-Case Bound!♣ For any constant c ∈ (0, 1), if wmin ≥ c
g and |p| ≥ c, then
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(
g

2
c ln g

δ

ε
2
c

)
⊆ Poly

1
c

(
1

c
,
1

ε
,
1

δ
, log 1

δ

)
.

Characterizing Fair-PAC Learnability

♣ Axiomatically characterize class of fair welfare functions
♦ Fairness varies interpersonally, but “reasonable axioms” describe “reasonable people”

♦ The power-mean family (with p ≤ 1): Mp(S;w)
.
= p

√√√√ g∑
i=1

wiSpi
♣ Analyze continuity properties of fair welfare functions
♦ Lipschitz and Hölder continuity:

∣∣M(S;w)−M(S ′;w)
∣∣ ≤ λ

∥∥S − S ′∥∥αM
♣ Fair-PAC learnability for all wefare functions W in class W
♦ Uniform convergence =⇒ FPAC-Learnability

A New Paradigm of Statistically Sound Fair Machine Learning
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