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• The power-mean for p ∈ R \ {0} summarizes g values S with weights w:

Mp(S;w)
.
= p

√√√√ g∑
i=1

wiSpi .

• Fair welfare: p ≤ 1, p =∞ is maximin over groups (egalitarianism)
– Measure overall wellbeing given utility values (income, accuracy)

• Fair malfare: p ≥ 1, p =∞ is minimax over groups (robust minimization)
– Measure overall illbeing given disutility values (loss, harm)

• Power-means are:
1. Axiomatically Justified
2. Interpretable
Mp(S;w) units match S

3. Statistically Stable
(for p ∈ [−∞, 0) ∪ [1,∞])

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

1

2

3

4

Power-Mean p

Mp
(
(1, 2, 3); 1

3

)
Mp

(
(1, 2, 3)± 1

2
; 1
3

)

Welfare, Malfare, and the Power Mean

1: Monotonicity 2: Symmetry 3: Continuity 4: IOUA 5: IOCS

6: Mult. Linearity

7: Unit Scale

Mono. in f -Mean
M(S;w)=(F ◦Mf )(S;w)

Mono. in p-Mean
M(S;w)=(F ◦Mp)(S;w)

Scaled p-Mean
M(S;w)=αMp(S;w)

p-Mean
M(S;w)=Mp(S;w)

3: Continuity 4: IOUA

8: Pigou-Dalton 9: Anti Pigou-Dalton

p ≤ 1
Fair Welfare

p ≥ 1
Fair Malfare

Relationships between population-mean axioms and properties.
Assumptions and axioms are shown in pastel blue, and properties in pastel red.

Axioms of Cardinal Welfare

1. Assuming only monotonicity:
Suppose ∀ω ∈ Ω : Ŝ(ω)− ε(ω) ≤ S(ω) ≤ Ŝ(ω) + ε(ω). Then

Mp(0 ∨ (Ŝ − ε);w) ≤ Mp(S;w) ≤ Mp(Ŝ + ε;w) ,

where a ∨ b denotes the (elementwise) maximum.

2. Suppose range r. Then with probability at least 1− δ over choice of x:

∣∣∣Mp(S;w)−Mp(Ŝ;w)
∣∣∣ ≤ r

√
ln 2g

δ

2m
.

3. Suppose range r and variances VDi [`]. With probability at least 1− δ:

∣∣∣Mp(S;w)−Mp(Ŝ;w)
∣∣∣ ≤ r ln 2g

δ

3m
+ max

i∈1,...,g

√
2VDi [`] ln

2g
δ

m
.

2 & 3 hold for all fair malfare functions (p ≥ 1), but not all welfare functions.

Estimating Malfare Values

Empirical risk and risk of hypothesis h given loss `:

R̂(h; `, z)
.
= Ê

(x,y)∈z

[
`(y, h(x))

]
& R(h; `,D) .

= E
(x,y)∼D

[
`(y, h(x))

]
.

We define empirical malfare minimization (EMM), given W

(·;w), D1:g, and
z1:g, with proxy and ideal models

ĥ
.
= argmin

h∈H

W(
i 7→ R̂(h; `, zi);w

)
& h∗

.
= argmin

h∈H

W(
i 7→ R(h; `,Di);w

)
.

Under what conditions is ĥ a good proxy for h∗?

Theorem 1 (Generalization Guarantees for Malfare Estimation). Suppose
fair power-mean malfare W

p(·; ·) (i.e., p ≥ 1), probability vector w ∈ Rg
+,

loss function ` : (Y × Y) → [0, r], samples zi ∼ Dm
i , and hypothesis class

H ⊆ X → Y. Then with probability at least 1− δ over choice of z,

sup
h∈H

∣∣∣ W

p

(
i 7→ R(h; `,Di);w

)
− W

p

(
i 7→ R̂(h; `, zi);w

)∣∣∣
≤ W

p

(
i 7→ 2R̂m(` ◦ H, zi) + 3r

√
ln g

δ
2m ;w

)
.

Empirical Malfare Minimization

• Training linear models on adult (census data) dataset
– Support vector machine (hinge loss)
– Logistic regression (cross entropy loss)
– Losses weighted by group-conditional label frequencies

• Predict whether income is ≤ or > 50, 000$ per annum
• Minimize malfare over 5 ethnic groups

• Higher p =⇒ fairer model, closer to egalitarianism

• p = 1 favors large groups (at the expense of minorities)

– This is the default, assuming minority groups are even consid-
ered during training!

– Dire need for fairness-sensitive learning objectives

Experiments

Definition 2 (Fair-PAC (FPAC) Learnability). Suppose hypothesis class
sequence H1 ⊆ H2 ⊆ · · · ⊆ X → Y, and loss function ` : Y × Y → R0+.
We say H is fair PAC-learnable w.r.t. loss function ` if ∃ a (randomized)
algorithm A, such that for all:
1. sequence indices d;
2. g instance distributions D1:g;
3. probability vectors w ∈ Rg

+;

4. malfares Wsatisfying axioms 1-7 & 9;
5. additive appx. errors ε > 0; and
6. failure probabilities δ ∈ (0, 1);

A can identify a hypothesis ĥ ∈ H, i.e., ĥ← A(D1:g,w,

W

, ε, δ, d), such that

1. there exists some sample complexity function m(ε, δ, d, g) :
(
R+×(0, 1)×N×

N
)
→ N s.t. A(D1:g,w,

W

, ε, δ, d) consumes no more than m(ε, δ, d, g) samples
(finite sample complexity); and
2. with probability at least 1− δ (over randomness of A), ĥ obeys

W(
i 7→ R(ĥ; `,Di);w

)
≤ inf

h∗∈H

W(
i 7→ R(h∗; `,Di);w

)
+ ε .

The class of such fair-learning problems is FPAC.

Finally, if for all d, the space of D is restricted such that ∃h ∈
Hd s.t. max

i∈1,...,g
R(h; `,Di) = 0 , then (H, `) is realizable-FPAC-learnable.

Fair PAC Learning

UC(`)
Finite

Natarajan / VC
dimension

Uniform Convergence

PAC(`) FPAC(`)

PAC(`) ERM FPAC(`) EMM

Agnostic Learning

PACRlz(`) FPACRlz(`)

PACRlz(`) ERM FPACRlz(`) EMM
Realizable Learning

PAC Learning FPAC Learning

0-1 loss
k <∞ classes

A
ss

um
pt

io
n

on
`

(n
o

fr
ee

lu
nc

h)

Implications between membership in PAC and FPAC classes. In particular,
for arbitrary fixed `, implication denotes implication of membership of some H
(i.e., containment). Dashed implication arrows hold conditionally on `.
When the no-free-lunch assumption on ` holds, the hierarchy collapses, and in
general, under realizability, some classes are known to coincide.

Fair PAC Learnability
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