An Axiomatic Theory of Provably-Fair Welfare-Centric Machine Learning

Welfare, Malfare, and the Power Mean N
o The power-mean for p € R\ {0} summarizes g values S with weights w:

o Fair welfare: p < 1, p = oo is mazimin over groups (egalitarianism)
— Measure overall wellbeing given utility values (income, accuracy)
o Fair malfare: p > 1, p = oo is minimazx over groups (robust minimization)

— Measure overall illbeing given disutility values (loss, harm)
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2. Interpretable 5
M, (S; w) units match S
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Axioms of Cardinal Welfare N

[1: Monotonicity][Q: Symmetry] [3: Continuity] (4: 10UA](5: I0CS) 7: Unit Scale
I

_— 6: Mult. Linearity
Y.

Mono. in f-Mean Mono. in p-Mean Scaled p-Mean p-Mean
M(S; w) = (FoMy)(S;w)| "|M(S; w) = (FoM,)(S; w) | |M(S; w) =aM,(S; w) | | M(S; w) =M, (S; w)

p<1
Fair Welfare

8: Pigou-Dalton
Relationships between population-mean axioms and properties.
Assumptions and axioms are shown in pastel blue, and properties in pastel red.

p=>1
Fair Malfare

[9: Anti Pigou—Dalton]
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Estimating Malfare Values N

1. Assuming only monotonicity:
Suppose Yw € O : S(w) — e(w) < S(w) < S(w) + &(w). Then

M, (0 V (S — €); w) < My(S; w) < My(S + &;w)
where a V b denotes the (elementwise) maximum.

2. Suppose range r. Then with probability at least 1 — § over choice of «:
2
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‘M,,(S; w) — Mp(S;w)‘ <52

3. Suppose range r and variances Vp, [¢]. With probability at least 1 — ¢:

M, (S; w) — Mp(S;'w)’ <
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Empirical Malfare Minimization N
Empirical risk and risk of hypothesis h given loss ¢:
R(h;l, z) = ( E [y, h(z))] & R(h¢,D)= E

T,y)EZ (z,y)~

[€(y, h(x))] -

We define empirical malfare minimization (EMM), given M(-; w), Di.4, and
Z1.g, with proxy and ideal models

h = argminAA(i — R(h; ¢, z;); w)
heH

& h* =argminM (i — R(h; (,D;);w) .
heH

Under what conditions is / a good proxy for h*?

Theorem 1 (Generalization Guarantees for Malfare Estimation). Suppose
fair power-mean malfare Mp(-;-) (i.e., p > 1), probability vector w € RY,
loss function £ : (Y x YY) — [0,r], samples z; ~ D", and hypothesis class
H C X — Y. Then with probability at least 1 — § over choice of z,

sup | M\, (z — R(h; ¢, D;); w)—AAp (z — R(h;ﬁ, zi); w)‘
heH

< A(\p(i — 2R, (Lo H, z) + 37"\/121115;10)

Experiments N

Weighted Hinge Risk

e Training linear models on adult (census data) dataset
— Support vector machine (hinge loss)

— Logistic regression (cross entropy loss)
— Losses weighted by group-conditional label frequencies

o Predict whether income is < or > 50,000$ per annum
o Minimize malfare over 5 ethnic groups

Per-Group Weighted Hinge Risk versus Malfare Function Per-Group Weighted LR Risk versus Malfare Function

N Black 9.64% 12.1%
White 85.43% 25.4%
Asian-Pac-Is 3.13% 26.9%

Il Am-Ind-Esk 0.96% 11.7%

I Other 0.84% 12.3%

I Am-Ind-Esk 0.96% 11.7%
N Other 0.83% 12.3%
Il Malfare

I Black 9.59% 12.1%
White 85.50% 25.4%
Asian-Pac-Is 3.11% 26.9%
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Weighted LR Risk

Fair PAC Learning \

Definition 2 (Fair-PAC (FPAC) Learnability). Suppose hypothesis class
sequence H1 C Hy C --- C X — Y, and loss function £: ) x Y — Ro4.

We say H is fair PAC-learnable w.r.t. loss function ¢ if 3 a (randomized)
algorithm A, such that for all:

1. sequence indices d;
2. g instance distributions D;.4;
3. probability vectors w € RY;

A can identify a hypothesis h € H, i.e., h + A(D1.g,w, M, €,6,d), such that

4. malfares M satisfying axioms 1-7 & 9;
5. additive appx. errors € > 0; and
6. failure probabilities 6 € (0,1);

1. there exists some sample complexity function m(e, d, d, g) : (R+ x (0,1) x N x
N) — Ns.t. A(D1.g, w, M\, €,0,d) consumes no more than m(e, d, d, g) samples

(finite sample complexity); and )
2. with probability at least 1 — ¢ (over randomness of A), h obeys

M (i R(h; £, D;);w) < hingHAA (i = R(R*; 6, D;);w) + e .
€
The class of such fair-learning problems is FPAC.

Finally, if for all d, the space of D is restricted such that dh €

Ha s.t. nax R(h;€,D;) =0 , then (H,?) is realizable-FPAC-learnable.
i€l,...,g
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Malfare Power p

Malfare Power p

o Higher p = fairer model, closer to egalitarianism
o p =1 favors large groups (at the expense of minorities)

— This is the default, assuming minority groups are even consid-
ered during training!

Fair PAC Learnability
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Uniform Convergence

0-1 loss
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Agnostic Learning
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Realizable Learning

Assumption on ¢ (no free lunch)

PAC Learning FPAC Learning

Implications between membership in PAC and FPAC classes. In particular,
for arbitrary fixed ¢, implication denotes implication of membership of some H
(i.e., containment). Dashed implication arrows hold conditionally on ¢.
When the no-free-lunch assumption on ¢ holds, the hierarchy collapses, and in
general, under realizability, some classes are known to coincide.

— Dire need for fairness-sensitive learning objectives

2 & 3 hold for all fair malfare functions (p > 1), but not all welfare functions.




