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♣ Group-centric fair learning considers the input and perspective of multiple groups
♠ WLOG assume a set Z of g groups, i.e., z ∈ 1, . . . , g

♠ Want to learn a mapping h ∈ H ⊆ X → Y, i.e., from domain X onto codomain Y
♠ Supervised learning process observes (X ,Y) pairs for each group z ∈ Z

♣ Sampling with multiple groups raises many questions:
♠ How is data collected? ♠ What is the cost? ♠ How to measure sample complexity?

♣ We introduce three models of sampling, and discuss learning in each:
1. Joint Sampling: Each i.i.d. sample contains information for each group. For ex-

ample, per-group representatives could be shown a shared x ∈ X and asked for
their feedback, which would then be used to establish some Yi for each group i.

2. Mixture Sampling: For each sample, the data are only relevant to one group, i.e.,
we randomly sample from a mixture distribution over groups.

3. Conditional Sampling: Here we actively choose from which group to sample.
Natural in active sampling, scientific inquiry, and stratified sampling settings,
where initial results guide further study.
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Sampling Models for Group-Centric Fair Learning

♣ This work generalizes, unifies, and analyzes three disparate fairness concepts
♠ Welfare W(⋅;w) summarizes overall wellbeing (utility u(⋅, ⋅)) across groups

♡♡ Generalizes utility maximization to multiple groups

h
∗
← argmax

h∈H
W (j ↦ E(x,y)∼Dj

[u(h(x), y)];w)
♠ Malfare W(⋅;w) summarizes overall illbeing (loss ℓ(⋅, ⋅))

♡♡ Generalizes risk minimization and minimax fair learning

h
∗
← argmin

h∈H

W(j ↦ E(x,y)∼Dj

[ℓ(h(x), y)];w)
♠ Regret measures the utility or loss s(⋅, ⋅) lost by compromising on a shared solution

♡♡ Generalizes multi-group agnostic PAC learning
♡♡ Compare overall solution h

∗ to per-group optimal solutions h
∗
j

h
∗
← argmin

h∈H

W⎛⎜⎜⎝j ↦ sup
h∗
j∈H

»»»»»»»»»» E(x,y)∼Dj

[s(h(x), y)] − E(x,y)∼Dj

[s(h∗j (x), y)]»»»»»»»»»» ;w
⎞⎟⎟⎠

♣ Fairness objectives mathematically encode the values of a society
♠ Different axiomatizations give rise to different objectives
♠ There is no “best” or “most fair” objective
♠ Various reasonable welfare W(⋅;w) and malfare W(⋅;w) functions

♡♡ Represent different priorities ♡♡ Make different tradeoffs

Fair Learning Objectives

♣ The power-mean for p ∈ R summarizes g values S1∶g with weights w1∶g as

Mp≠0(S;w) ≐ p
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♣ Fair welfare requires p ≤ 1; extremes are interesting special cases
♠ p = 1 is weighted sum over groups (well-studied case)
♠ p = −∞ limit is minimum over groups (egalitarian or robust maximization)

♣ Fair malfare (or regret malfare) requires p ≥ 1

♠ p = ∞ limit is maximum over groups (egalitarian, minimax fair learning)

♣ Power-means are:
1. Axiomatically Justified
2. Interpretable
Mp(S;w) units match S1∶g

3. Stochastically Stable
(for p ∈ [−∞, 0) ∪ [1,∞])
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Utilitarian, Egalitarian, and the Power Mean Family

♣ Fairness in trainig is not sufficient!
♠ Less data available for marginalized or minority groups ⟹ overfitting
♠ Induction bias on welfare, malfare, or regret objectives

♣ Given (WLOG) some malfare objective W(⋅), hypothesis space H
♠ Exists some optimal h∗ ∈ H
♠ Want to select (learn) a hypothesis ĥ ∈ H

h
∗ĥ

H
♣ ĥ should be almost as good as h

∗

♠ ε-δ Probably Approximately Correct
♠ With probability at least 1 − δ (over training data):

W(j ↦ E(x,y)∼Dj

[ℓ(ĥ(x), y)];w) ≤ ε + inf
h∗∈H

W(j ↦ E(x,y)∼Dj

[ℓ(h∗(x), y)];w)
♣ Special cases:

♠ Utilitarian malfare: weighted risk minimizationweighted risk minimization
♡♡ Minimize weighted sum of per-group risks

♠ Egalitarian malfare: minimax fair learningminimax fair learning
♡♡ Minimize worst-case per-group risk

Bounding Generalization Error and Overfitting to Fairness

♣ Suppose power-mean malfare W

p(⋅;w) with p ≥ 1

♣ Suppose loss range [0, r] and maximum variance v ≐ sup
j∈Z

E(x,y)∼Dj

[ℓ(h(x), y)]
♣ Gap between empirical malfare ˆ Wand true malfare Wis bounded as

1. P
⎛⎜⎝»»»»» W

− ˆ W»»»»» ≥ r ln
2g

δ

3m
+

√
2v ln 2g

δ

m

⎞⎟⎠ ≤ δ

2. »»»»»E [ W] − E [ ˆ W]»»»»» ≤ E [»»»»» W

− ˆ W»»»»»] ≤ r ln(2eg)
3m

+

√
2v ln(2eg)

m

Bernstein-Type Bounds for Malfare Estimation

♣ Goal is to estimate or optimize the objective to within ε additive error
♣ How much will an additional sample for group i improve confidence bounds?
♣ For power-mean malfare, we can cleanly approximate this quantity:

♠ Suppose power-mean malfare W

p(⋅;w) and let ˆ Wbe the empirical malfare
♠ Let ε̂ denote confidence interval radius for group i

♠ Let ˆ W↑ and ˜ W↑ be UCB estimates of Wwith with sample sizes m1∶g and m + 1i

♠ Then the incremental impact of sampling from group i is approximately

ˆ W↑
− ˜ W↑ ≈ ε̂iwi

2mi + 3
2

⎛⎜⎝ Êxi,∶,yi,∶[ℓ ◦ ĥ] + ε̂i

ˆ W↑
⎞⎟⎠
p−1

≈ ε̂iwi

2mi

⎛⎜⎝ Êxi,∶,yi,∶[ℓ ◦ ĥ]
ˆ W

⎞⎟⎠
p−1

1. Inversely proportional to the amount of effort mi already spent studying group i

2. Proportional to the current bound radius ε̂i and the group weight wi

3. Proportional to the ratio between group risk and ˆ W(relative risk)
(a) Raising this term to the (p − 1)th power nonlinearly adjusts its impact
(b) Higher p saturate high-risk groups, tending towards egalitarianism
(c) Decreasing p → 1 takes this term to 1 (constant), tending toward utilitarianism

The Incremental Knowledge Gain of a Single Sample

♣ Suppose Gaussian uncertainty over group 1 and group 2 risk values
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♣ Optimal choice depends on both per-group uncertainty and objective
♠ Egilitarian malfare: sample group 1, more likely to be the minimum
♠ Utilitarian malfare: sample group 2, expect more improvement

Example: Optimal Sampling under Parametric Gaussian Assumption

♣ Progressive sampling turns statistical bounds into approximation algorithms
♣ The basic idea is quite simple:

1. Start with a small sample from each group
2. Optimize or estimate the objective on the current sample
3. Terminate if some optimality condition is met
4. Draw a larger sample and repeat from (2)

♣ We can estimate any continuous monotonic fairness objective
♠ No continuity ⟹ algorithm may never terminate
♠ Continuity ⟹ eventual termination under infinite sampling schedule
♠ Lipschitz continuity ⟹ sufficient finite sampling schedule (more efficient)

♣ Efficiently operate under various sampling models
♠ Joint Sampling, Mixture Sampling: only decision is when to terminate
♠ Conditional Sampling: must also decide where to sample!

♡♡ Active learning with greedy optimality heuristic:
♢♢ Balance cost and estimated bound improvement

Progressive and Active Sampling Algorithms for Fair Learning
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