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♣ The power-mean for p ∈ R \ {0} summarizes g values S1:g with weights w:

Mp(S;w)
.
= p

√√√√ g∑
i=1

wiSpi .

♣ Fair welfare: p ≤ 1, p =∞ is minimum over groups (egalitarian optimization)
♠ Measure overall wellbeing given utility values (accuracy, income)

♣ Fair malfare: p ≥ 1, p =∞ is minimum over groups (robust minimization)
♠ Measure overall illbeing given disutility values (loss, harm)

♣ Power-means are:
1. Axiomatically Justified
2. Interpretable
Mp(S;w) units match S1:g

3. Stochastically Stable
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Welfare, Malfare, and the Power Mean

1: Monotonicity 2: Symmetry 3: Continuity 4: IUA 5: ICS

6: Mult. Linearity

7: Unit Scale

Monotonic in f -Mean
M(S;w)=(F ◦Mf )(S;w)

Monotonic in p-Mean
M(S;w)=(F ◦Mp)(S;w)

Scaled p-Mean
M(S;w)=αMp(S;w)

p-Mean
M(S;w)=Mp(S;w)

3: Continuity 4: IUA

8: Pigou-Dalton 9: Anti Pigou-Dalton

p ≤ 1
Fair Welfare

p ≥ 1
Fair Malfare Axioms

Properties
imply

Key:

Relationships between aggregator function axioms and properties (cardinal welfare theory).

Axioms of Cardinal Welfare

1. Assuming only monotonicity:
Suppose ∀ω ∈ Ω : Ŝ(ω)− ε(ω) ≤ S(ω) ≤ Ŝ(ω) + ε(ω). Then

Mp(0 ∨ (Ŝ − ε);w) ≤ Mp(S;w) ≤ Mp(Ŝ + ε;w) ,

where a ∨ b denotes the (elementwise) maximum.

2. Suppose range r. Then with probability at least 1− δ over choice of x:∣∣∣Mp(S;w)−Mp(Ŝ;w)
∣∣∣ ≤ r

√
ln 2g

δ

2m
.

3. Suppose range r and variances VDi [`]. With probability at least 1− δ:∣∣∣Mp(S;w)−Mp(Ŝ;w)
∣∣∣ ≤ r ln 2g

δ

3m
+ max

i∈1,...,g

√
2VDi [`] ln

2g
δ

m
.

N.b.: 2 & 3 hold for all fair malfare functions (p ≥ 1), but not all fair welfare functions.

Estimating Malfare Values

Empirical risk and risk of hypothesis h given loss `:

R̂(h; `, z)
.
= Ê

(x,y)∈z

[
`(y, h(x))

]
& R(h; `,D) .

= E
(x,y)∼D

[
`(y, h(x))

]
.

We define empirical malfare minimization (EMM), given W

(·;w), D1:g, and z1:g, with proxy
and optimal models

ĥ
.
= argmin

h∈H

W(
i 7→ R̂(h; `,zi);w

)
& h∗

.
= argmin

h∈H

W(
i 7→ R(h; `,Di);w

)
.

Under what conditions is ĥ a good proxy for h∗?

Theorem 1 (Uniform Convergence of Malfare)
Suppose fair malfare W

p(·; ·) (i.e., p ≥ 1), probability vector w ∈ Rg
+, loss function

` : (Y × Y)→ [0, r], samples zi ∼ Dm
i , and hypothesis class H ⊆ X → Y.

Then with probability at least 1− δ over choice of z:

sup
h∈H

∣∣∣ W

p

(
i 7→ R(h; `,Di);w

)
− W

p

(
i 7→ R̂(h; `, zi);w

)∣∣∣
≤ W

p

(
i 7→ 2R̂m(` ◦ H, zi) + 3r

√
ln g

δ
2m ;w

)
.

Empirical Malfare Minimization

♣ Training linear models on adult (census data) dataset
♠ Support vector machine (hinge loss)
♠ Logistic regression (cross entropy loss)
♠ Losses weighted by group-conditional label frequencies

♣ Predict whether income exceeds 50, 000$ per annum
♣ Minimize power-mean malfare over g = 5 ethnic groups

♣ Higher p =⇒ fairer model, closer to egalitarianism

♣ p = 1 favors large groups (at the expense of minorities)
♠ This is the default (if minority groups are even considered during training)!
♠ Dire need for fairness-sensitive learning objectives

Experiments

Definition 2 (Fair-PAC Learnability)
Hypothesis class sequence H1 ⊆ H2 ⊆ · · · ⊆ X → Y is fair-PAC-learnable w.r.t. loss
function ` : Y × Y → R0+ if there exists a (randomized) algorithm A, such that for all:
1. sequence indices d;
2. g instance distributions D1:g;
3. probability vectors w ∈ Rg

+;

4. malfares Wsatisfying axioms 1-7+9;
5. additive appx. errors ε > 0; &
6. failure probabilities δ ∈ (0, 1);

A can identify a hypothesis ĥ ∈ H, i.e., ĥ← A(D1:g,w,

W

, ε, δ, d), where

1. finite sample complexity: A(D1:g,w,

W

, ε, δ, d) consumes no more than
m(ε, δ, d, g) :

(
R+ × (0, 1)× N× N

)
→ N samples; &

2. correctness: with probability at least 1− δ, ĥ obeys

W(
i 7→ R(ĥ; `,Di);w

)
≤ inf

h∗∈H

W(
i 7→ R(h∗; `,Di);w

)
+ ε .

♣ The class of such fair-learning problems is denoted FPAC
♣ If ∀d ∈ N, the space of D1:g is restricted s.t. inf

h∈Hd

max
i∈1,...,g

R(h; `,Di) = 0 ,

♠ then (H, `) is realizable-FPAC-learnable, denoted (H, `) ∈ FPACRlz

Fair PAC Learnability
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♣ Implications between membership in PAC and FPAC classes
♠ For fixed `, ⇒ denotes implication of membership of some H (i.e., containment)

♣ Dashed implication arrows hold conditionally on `

♠ When the no-free-lunch assumption on ` holds, the hierarchy collapses
♣ Under realizability, some classes are known to coincide

Fundamental Theorem of Fair Statistical Learning
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