

An Axiomatic Theory of Provably-Fair Welfare-Centric Machine Learning

Cyrus Cousins $\heartsuit \diamondsuit$ Brown University $\clubsuit \diamondsuit$ Department of Computer Science cvrus cousins@brown.edu $\heartsuit \diamondsuit \clubsuit \clubsuit$ http://cs.brown.edu/people/ccousins/projects/fairness/home.html

Velfare, Malfare, and the Power Mean

♣ The power-mean for $p \in \mathbb{R} \setminus \{0\}$ summarizes g values $S_{1:g}$ with weights w:

D D BROWN

$$\mathrm{M}_p(\mathcal{S}; oldsymbol{w}) \doteq \sqrt[p]{\sum_{i=1}^g oldsymbol{w}_i \mathcal{S}_i^p}}$$

UNIVERSITY

- Fair welfare: $p \leq 1, p = \infty$ is *minimum* over groups (egalitarian optimization) ♠ Measure overall wellbeing given utility values (accuracy, income)
- Fair malfare: $p \ge 1$, $p = \infty$ is *minimum* over groups (robust minimization)
- ♠ Measure overall illbeing given disutility values (loss, harm)
- ♣ Power-means are: $M_p((1,2,3);\frac{1}{3})$ 1. Axiomatically Justified $\mathbb{D} M_p((1,2,3)\pm\frac{1}{2};\frac{1}{3})$ 2. Interpretable $M_p(\mathcal{S}; \boldsymbol{w})$ units match $\mathcal{S}_{1:a}$ 3. Stochastically Stable (for $p \in [-\infty, 0) \cup [1, \infty]$) -6 -5 -4 -3 -2 -1 0 1 2 3 Power-Mean *p*

stimating Malfare Values

1. Assuming only *monotonicity*:

Suppose
$$\forall \omega \in \Omega : \hat{\mathcal{S}}(\omega) - \boldsymbol{\varepsilon}(\omega) \leq \mathcal{S}(\omega) \leq \hat{\mathcal{S}}(\omega) + \boldsymbol{\varepsilon}(\omega)$$
. Then
 $M_p(\mathbf{0} \lor (\hat{\mathcal{S}} - \boldsymbol{\varepsilon}); \boldsymbol{w}) \leq M_p(\mathcal{S}; \boldsymbol{w}) \leq M_p(\hat{\mathcal{S}} + \boldsymbol{\varepsilon}; \boldsymbol{w}) ,$

where $a \lor b$ denotes the (elementwise) maximum.

2. Suppose range r. Then with probability at least $1 - \delta$ over choice of x:

$$\left| \mathrm{M}_p(\mathcal{S}; \boldsymbol{w}) - \mathrm{M}_p(\hat{\mathcal{S}}; \boldsymbol{w}) \right| \leq r \sqrt{\frac{\ln \frac{2g}{\delta}}{2m}}$$

3. Suppose range r and variances $\mathbb{V}_{\mathcal{D}_i}[\ell]$. With probability at least $1 - \delta$:

$$\left| \mathrm{M}_p(\mathcal{S}; \boldsymbol{w}) - \mathrm{M}_p(\hat{\mathcal{S}}; \boldsymbol{w}) \right| \leq \frac{r \ln \frac{2g}{\delta}}{3m} + \max_{i \in 1, \dots, g} \sqrt{\frac{2 \, \mathbb{V}_{\mathcal{D}_i}[\ell] \ln \frac{2g}{\delta}}{m}}$$

N.b.: 2 & 3 hold for all fair malfare functions $(p \ge 1)$, but not all fair welfare functions.

Empirical Malfare Minimization

Empirical risk and risk of hypothesis h given loss ℓ :

$$\widehat{\mathbf{R}}(h;\ell,\boldsymbol{z}) \doteq \widehat{\mathbb{E}}_{(x,y)\in\boldsymbol{z}} \big[\ell(y,h(x)) \big] \quad \& \quad \mathbf{R}(h;\ell,\mathcal{D}) \doteq \mathbb{E}_{(x,y)\sim\mathcal{D}} \big[\ell(y,h(x)) \big]$$

We define *empirical malfare minimization* (EMM), given $\mathcal{M}(\cdot; \boldsymbol{w})$, $\mathcal{D}_{1:q}$, and $\boldsymbol{z}_{1:q}$, with proxy and optimal models

$$\hat{h} \doteq \underset{h \in \mathcal{H}}{\operatorname{argmin}} \mathcal{M}\left(i \mapsto \hat{\mathcal{R}}(h; \ell, \boldsymbol{z}_i); \boldsymbol{w}\right) \quad \& \quad h^* \doteq \underset{h \in \mathcal{H}}{\operatorname{argmin}} \mathcal{M}\left(i \mapsto \mathcal{R}(h; \ell, \mathcal{D}_i); \boldsymbol{w}\right) \;.$$

Under what conditions is \hat{h} a good proxy for h^* ?

Theorem 1 (Uniform Convergence of Malfare)

Suppose fair malfare $M_p(\cdot; \cdot)$ (i.e., $p \geq 1$), probability vector $\boldsymbol{w} \in \mathbb{R}^{q}_{+}$, loss function $\ell: (\mathcal{Y} \times \mathcal{Y}) \to [0, r], \text{ samples } \mathbf{z}_i \sim \mathcal{D}_i^m, \text{ and hypothesis class } \mathcal{H} \subseteq \mathcal{X} \to \mathcal{Y}.$

Then with probability at least $1 - \delta$ over choice of z:

$$\begin{split} \sup_{h \in \mathcal{H}} & \left| \mathcal{M}_p \big(i \mapsto \mathcal{R}(h; \ell, \mathcal{D}_i); \boldsymbol{w} \big) - \mathcal{M}_p \big(i \mapsto \hat{\mathcal{R}}(h; \ell, \boldsymbol{z}_i); \boldsymbol{w} \big) \right| \\ & \leq \mathcal{M}_p \bigg(i \mapsto 2 \hat{\boldsymbol{\mathfrak{K}}}_m(\ell \circ \mathcal{H}, \boldsymbol{z}_i) + 3r \sqrt{\frac{\ln \frac{g}{\delta}}{2m}}; \boldsymbol{w} \bigg) \end{split}$$

xperiments

A Training *linear models* on *adult* (census data) dataset

- ♦ Support vector machine (hinge loss)
- ▲ Logistic regression (cross entropy loss)
- ♠ Losses weighted by group-conditional label frequencies
- ♣ Predict whether income exceeds 50,000\$ per annum
- \clubsuit Minimize power-mean malfare over q = 5 ethnic groups

- p = 1 favors *large groups* (at the expense of minorities)
 - ▲ This is the default (if minority groups are even considered during training)!
 - ▲ Dire need for fairness-sensitive learning objectives

NeurIPS 2021 35th Conference on Neural Information Processing Systems

Online December 6-14, 2021

air PAC Learnability **Definition 2** (Fair-PAC Learnability)

Hypothesis class sequence $\mathcal{H}_1 \subset \mathcal{H}_2 \subset \cdots \subset \mathcal{X} \to \mathcal{Y}$ is fair-PAC-learnable w.r.t. loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_{0+}$ if there exists a (randomized) algorithm \mathcal{A} , such that for all:

- 1. sequence indices d:
- 2. g instance distributions $\mathcal{D}_{1:q}$;
- 3. probability vectors $\boldsymbol{w} \in \mathbb{R}^g_+$;
- 4. malfares M satisfying axioms 1-7+9;
- 5. additive appx. errors $\varepsilon > 0$; & 6. failure probabilities $\delta \in (0, 1)$;

 \mathcal{A} can identify a hypothesis $\hat{h} \in \mathcal{H}$, i.e., $\hat{h} \leftarrow \mathcal{A}(\mathcal{D}_{1:q}, \boldsymbol{w}, \mathcal{M}, \varepsilon, \delta, d)$, where

- 1. finite sample complexity: $\mathcal{A}(\mathcal{D}_{1:q}, w, \mathcal{M}, \varepsilon, \delta, d)$ consumes no more than $\mathbf{m}(\varepsilon, \delta, d, g) : (\mathbb{R}_+ \times (0, 1) \times \mathbb{N} \times \mathbb{N}) \to \mathbb{N} \text{ samples; } \mathcal{E}$
- 2. correctness: with probability at least 1δ , \hat{h} obeys

$$M\left(i \mapsto \mathrm{R}(\hat{h}; \ell, \mathcal{D}_i); \boldsymbol{w}\right) \leq \inf_{h^* \in \mathcal{H}} M\left(i \mapsto \mathrm{R}(h^*; \ell, \mathcal{D}_i); \boldsymbol{w}\right) + \varepsilon .$$

- ♣ The class of such fair-learning problems is denoted FPAC
- ♣ If $\forall d \in \mathbb{N}$, the space of $\mathcal{D}_{1:g}$ is restricted s.t. $\inf_{h \in \mathcal{H}_d} \max_{i \in 1, ..., g} \mathbb{R}(h; \ell, \mathcal{D}_i) = 0$,
- then (\mathcal{H}, ℓ) is realizable-FPAC-learnable, denoted $(\mathcal{H}, \ell) \in \text{FPAC}^{\text{Rlz}}$

Fundamental Theorem of Fair Statistical Learning

- For fixed ℓ , \Rightarrow denotes *implication of membership* of some \mathcal{H} (i.e., containment)
- **\clubsuit** Dashed implication arrows hold conditionally on ℓ
- \blacklozenge When the no-free-lunch assumption on ℓ holds, the hierarchy collapses
- ♣ Under realizability, some classes are known to coincide