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Welfare, Malfare, and the Power Mean
& The power-mean for p € R\ {0} summarizes g values Si.q with weights w:

& Fair welfare: p <1, p = oo is minimum over groups (egalitarian optimization)
& Measure overall wellbeing given utility values (accuracy, income)
& Fair malfare: p > 1, p = oo is minimum over groups (robust minimization)

& Measure overall illbeing given disutility values (loss, harm)
4 1 1 1

& Power-means are:

1. Aziomatically Justified

2. Interpretable

M, (S; w) units match Sy.q
3. Stochastically Stable

(for pe [_007 O) U [17 OO]) -6 -5 -4

Power-Mean p
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Axioms of Cardinal Welfare

[1: Monotonicity] [2: Symmetry] [3: Continuity] [4: IUA] [5: ICS]
Z

7: Unit Scale

[6: Mult. Linearity]

Monotonic in f-Mean Monotonic in p-Mean Scaled p-Mean p-Mean
M(S;w) = (FoMy)(S;w) | |M(S;w) = (FoM,)(S;w) | | M(S; w) =aM,(S; w) | | M(S; w) =M, (S; w)

p<1
Fair Welfare

8: Pigou-Dalton

p>1

Fair Malfare

Properties

[9: Anti Pigou—Dalton]

An Axiomatic Theory of Provably-Fair Welfare-Centric Machine Learning %O o
& & Department of Computer Science dR0

http://cs.brown.edu/people/ccousins/projects/fairness/home.html
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Empirical Malfare Minimization
Empirical risk and risk of hypothesis h given loss ¢:

R(hit,z) = E [l(y,h(z))] & R(h;(,D)= E
(z.9)€2 (w.9)~

[¢(y, h(x))] -

We define empirical malfare minimization (EMM), given M(-; w), D1.4, and 2z1.4, with proxy
and optimal models

h* = argminAA(i — R(h; ¢, D;); w) .

h = argminAA(i — f{(h;ﬁ, zi); w) &
heH

heH
Under what conditions is h a good proxy for h*?

Theorem 1 (Uniform Convergence of Malfare)
Suppose fair malfare N\,(+;-) (i.e., p > 1), probability vector w € RY, loss function

C: (Y xY)—[0,7], samples z; ~ D", and hypothesis class H C X — ).
Then with probability at least 1 — & over choice of z:

sup AAp(i — R(h; ¢, D;); w) —AAp(i > f{(h;& Zi); w)’

heH
<M, (z = 2R, (Lo H, z;) + 31/ %; w)

Experiments N

Relationships between aggregator function axioms and properties (cardinal welfare theory).
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Estimating Malfare Values

1. Assuming only monotonicity:
Suppose Vw € O : S(w) — e(w) < S(w) < S(w) + e(w). Then
M,(0V (S — &);w) < My(S;w) < My(S + &;w)
where a V b denotes the (elementwise) maximum.

2. Suppose range . Then with probability at least 1 — § over choice of x:
R In %g
M, (S; w) — M,(S: ‘ <] 20
My (83 w) = My (S w)| < 7y 2

3. Suppose range r and variances Vp,[¢]. With probability at least 1 — ¢:

rin % 2Vp,[¢] In 2

& Training linear models on adult (census data) dataset

& Support vector machine (hinge loss)
& Logistic regression (cross entropy loss)
& Losses weighted by group-conditional label frequencies

& Predict whether income exceeds 50, 000$ per annum
& Minimize power-mean malfare over ¢ = 5 ethnic groups

Per-Group Weighted LR Risk versus Malfare Function
B Am-Ind-Esk 0.96% 11.7%
EEm Other 0.83% 12.3%

Il Malfare

Per-Group Weighted Hinge Risk versus Malfare Function

B Black 9.64% 12.1%
White 85.43% 25.4%

= Asian-Pac-Is 3.13% 26.9% 4
B Am-Ind-Esk 0.96% 11.7%

Ml Black 9.59% 12.1%
White 85.50% 25.4%
Asian-Pac-Is 3.11% 26.9%

ted Hinge Risk

Weigh
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Malfare Power p
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Malfare Power p

& Higher p = fairer model, closer to egalitarianism

& p =1 favors large groups (at the expense of minorities)
& This is the default (if minority groups are even considered during training)!
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Fair PAC Learnability
Definition 2 (Fair-PAC Learnability)
Hypothesis class sequence Hqy € Hy € --- C X — Y is fair-PAC-learnable w.r.t. loss
function ¢ : Y x Y — Roy if there exists a (randomized) algorithm A, such that for all:

4. malfares N\ satisfying axioms 1-7+9;

5. additive appx. errors e > 0; &

6. failure probabilities § € (0,1);

1. sequence indices d;
2. g instance distributions Di.4;
3. probability vectors w € RY ;

A can identify a hypothesis h € H, i.e., h + A(D1.g, w, M\, €,6,d), where

1. finite sample complexity: A(Di.4, w, M, ¢€,6,d) consumes no more than
m(e, d,d, g) : (R+ x (0,1) x N x N) — N samples; &

2. correctness: with probability at least 1 — 9, h obeys

M (i = R(h; £,D;);w) < Jnf M (i R(W™ £, Di)sw) +e

& The class of such fair-learning problems is denoted FPAC
& If Vd € N, the space of Dy.4 is restricted s.t. inf max R(h;¢,D;) =0 ,

heHqi€l,....g

& then (M, () is realizable-FPAC-learnable, denoted (H,¢) € FPACR!”

Fundamental Theorem of Fair Statistical Learning

Uniform Convergence
Finite VC
Dimension

b 4
ERM}é&=—=FPAC({) EMM

Agnostic Learning

0-1 classification loss

I {FPAC(¢)

PACR”(¢) ERM=—={FPAC"*(¢) EMM

Realizable Learning

Assumption on ¢ (no free lunch)

SFPACR (¢)

PAC Learning FPAC Learning

& Implications between membership in PAC and FPAC classes
& For fixed ¢, = denotes implication of membership of some H (i.e., containment)

& Dashed implication arrows hold conditionally on ¢

& When the no-free-lunch assumption on ¢ holds, the hierarchy collapses

& Under realizability, some classes are known to coincide

M, (S w) = My (83 w)| < + max
3m i€l,...,9 m Di d for fai tive 1 . biecti
| N.b.: 2 & 3 hold for all fair malfare functions (p > 1), but not all fair welfare functions. | 4 Dire need for fairness-sensitive fearning objectives J
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