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Abstract

Cardinal objectives serve as intuitive targets in
fair machine learning by summarizing utility (wel-
fare) or disutility (malfare) u over g groups. Un-
der standard axioms, all welfare and malfare
functions are w-weighted p-power-means, i.e.,
Mp(u;w)

.
= p
√∑g

i=1wiu
p

i , with p≤ 1 for wel-
fare, or p ≥ 1 for malfare. We show the same
under weaker axioms, and also identify stronger
axioms that naturally restrict p. It is known that
power-mean malfare functions are Lipschitz con-
tinuous, and thus statistically easy to estimate or
learn. We show that all power means are locally
Hölder continuous, i.e., |M(u;w)−M(u′;w)|≤
λ∥u− u′∥α for some λ, α, ∥·∥. Furthermore, λ
and 1

α are bounded except as p→0 or mini wi→
0, and via this analysis we bound the sample com-
plexity of optimizing welfare. This yields a novel
concept of fair-PAC learning, wherein welfare
functions are only polynomially harder to opti-
mize than malfare functions, except when p ≈ 0
or mini wi ≈ 0, which is exponentially harder.

1 Introduction

The recent resurgence of cardinal welfare and malfare based
methods in group-based fairness settings has led to increased
attention as to how to objectively quantify fairness. Welfare
summarizes utility across a population, and is thus suit-
able for fair utility-maximization tasks (e.g., bandit prob-
lems, reward-based reinforcement learning [Siddique et al.,
2020, Cousins et al., 2022], and recommender systems),
whereas malfare measures overall disutility, and is thus di-
rectly applicable to fair loss minimization tasks (arguably
most machine learning tasks). The promise of statistical
and computational efficiency differentiates such approaches
from constraint-based fairness methods [Dwork et al., 2012,
Zemel et al., 2013], which often yield hard non-convex
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optimization problems and statistical quandaries in estimat-
ing whether such fairness constraints generalize beyond
the training set [Yona and Rothblum, 2018, Thomas et al.,
2019]. The axiomatic justification for cardinal welfare and
malfare functions also gives them a sense of objectivity,
whereas fairness constraints are often intuitively motivated,
and at times mutually incompatible [Kleinberg et al., 2017,
Friedler et al., 2021]. We find a basis of cardinal welfare
axioms that is weaker than the standard basis, and then pro-
pose stronger axioms to further specify such functions, and
explore the resulting classes of fair learnability.

Section 3.1 shows that some of the cardinal welfare or mal-
fare axioms of Cousins [2021] can be relaxed or reorganized
to form a piecewise-weaker equivalent basis, i.e., each of
our axioms is no stronger than a standard axiom. Subject to
these axioms, the w-weighted p-power-mean family arises
as the only axiomatically justified class of fair aggregator
functions, however the parameter space of this class is quite
large, thus the theory does not uniquely specify an “ideal
fairness concept.” Many have argued that exact human-
desirable fairness concepts cannot be fully specified with-
out unjustifiable assumptions, and that variation in feasible
aggregator function concepts reflects variation in human
morality and social values [Awad et al., 2018, Schneider
and Leland, 2021]. We do not reject this claim, however we
do show in section 3.3 that additional axioms can further
restrict the family of malfare or welfare functions, although
such axioms may be less universal than the standard basis.

While welfare maximization and malfare minimization ap-
pear to be two sides of the same coin, salient mathematical
differences arise. We find in section 3.4 that, unlike mal-
fare , welfare functions are not always Lipschitz continuous
(though they are Hölder continuous), and not uniformly
fair-PAC (FPAC) learnable in the sense of Cousins [2021].
However, section 4 shows that under a more lenient defi-
nition of FPAC learnability, in which sample complexity
(i.e., the sufficient sample size to approximately optimize
an objective over some classH) may depend on the welfare
function through the minimum group weight reciprocal 1

wmin

and/or 1
|p| (which quantifies how close the welfare function

is to the challenging p = 0 Nash case), then if H is uni-
formly convergent with polynomial sample complexity,H
is also FPAC learnable with polynomial sample complexity.
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We then split the power-mean spectrum into regions, the
boundaries of which are defined by our extended axioms,
and show that each is in some sense FPAC learnable. This
work culminates in thm. 4.4, which shows that if a bounded
utility maximization task is PAC-learnable with polynomial
sample complexity, then the welfare maximization task is
FPAC-learnable, with possible exponential dependence on

1
wmin

or 1
|p| , and otherwise fully-polynomial sample com-

plexity. We close section 4 by showing that our sample-
complexity bounds can be incorporated into progressive-
sampling routines, which adapt their sample consumption
to the difficulty of the task at hand, with only logarith-
mic multiplicative overhead. Worst-case sample-complexity
bounds are theoretically interesting, as they lend confidence
to the proposition that a machine learning system accurately
and fairly learns an objective, and sample-efficient analyses
are practically significant, as they seek to learn confidently
while minimizing the cost of data collection.

All proofs are meticulously derived in appx. A. The primary
contributions of this paper are as follows.
1) In section 3.1 we derive a simplified axiomatic basis for
cardinal welfare and malfare functions.
2) We extend the core axiomatic basis in section 3.3 with
optional axioms, which lead to convenient computational
and statistical properties, while enjoying intuitive real-world
interpretations, thus guiding welfare function selection.
3) In section 3.4 we analyze the Lipschitz and Hölder con-
tinuity of power means. We argue that local behavior is
crucial to algorithm analysis, particularly statistical behav-
ior and response to small input perturbations.
4) Section 4 explores the impact of additional axioms on
FPAC learnability. In particular, if we allow sample com-
plexity to depend on 1

wmin
and 1

|p| , additional axioms nat-
urally split the power-mean spectrum into several regions,
and show that each is in some sense FPAC learnable.

2 Related Work

In cardinal fairness learning tasks, we generally receive
training data or feedback from multiple groups, which rep-
resents the needs or wants of each group, and we seek to
maximize welfare or minimize malfare to fairly compromise
among groups. Objective choice is a crucial modelling deci-
sion, as it mathematically encodes the values of the social
planner [Sen, 1977, Roberts, 1980, Moulin, 2004]. Due to
variation in human values, we can’t uniquely characterize
fairness with mathematics alone, however analysis does elu-
cidate the limitations and properties of cardinal objectives.
Axiomatic reasoning and analysis from the econometrics lit-
erature informs us as to the limitations and properties of car-
dinal objectives [Pigou, 1912, Dalton, 1920, Debreu, 1959,
Gorman, 1968]. The moral philosophy literature also pro-
vides insight into social objectives, from classical utilitarian
theory [Bentham, 1789, Mill, 1863], in which all parties are
treated as equals, to prioritarianism, [Parfit, 1997, Arneson,

2000], where the less-fortunate are given more weight, to
egalitarian or Rawlsian theory [Rawls, 1971, 2001], which
considers the least-fortunate before all others.

Prior work in computer science primarily handles malfare.
Group-DRO (distributionally robust optimization) methods
minimize worst-case (egalitarian) risk [Hu et al., 2018, Oren
et al., 2019, Sagawa et al., 2019], which is also known as
minimax-fair learning [Diana et al., 2021, Shekhar et al.,
2021, Abernethy et al., 2022] and by other names [Mar-
tinez et al., 2020, Lahoti et al., 2020, Cortes et al., 2020,
Shekhar et al., 2021], and fair-PAC learning generalizes this
idea by optimizing arbitrary power-mean malfare objectives
[Cousins, 2021, 2022, Cousins et al., 2022], which derive
from an axiomatic welfare theory perspective. Some au-
thors, e.g., Hu and Chen [2020], do discuss direct welfare
optimization, however they do not treat the resulting sta-
tistical questions or bound generalization error or sample
complexity, and thus the issues we identify with the statisti-
cal difficulty of welfare optimization are not addressed.

Heidari et al. [2018] employ axiomatic cardinal welfare the-
ory to introduce fairness constraints for machine learning
tasks, and Cousins [2021, 2022] generalizes the axioms of
cardinal welfare to allow for per-group weight values, ex-
plores computational and statistical learnability, and bounds
sample complexity for the malfare (p ≥ 1) case. Thomas
et al. [2019] also introduce a concept of fair statistical learn-
ability, termed the Seldonian learner, which encapsulates
both constraint-based and cardinal objective-based fair learn-
ing settings, however, this framework is so general that it
is difficult to establish classes of learnability. In contrast,
by adopting an axiomatic cardinal-welfare centric view-
point, we operate over specific classes of welfare or malfare
functions, which allows us to broadly analyze the sample
complexity of various learning problems.

3 On Axiomatizations of Cardinal Fairness
Objectives

Herein we define aggregator functions, which summarize
overall sentiment (either utility or disutility), expressed
as a sentiment vector u ∈ Rg

0+ over a population of g
groups weighted by weights vector w ∈ △g, where △g

is the nondegenerate probability simplex over g groups,
i.e., w ∈ (0, 1)g and ∥w∥1 = 1. We use M(u;w) to de-
note generic aggregator functions, W(u;w) for welfare
functions (positively-connoted sentiment), and

W

(u;w)
for malfare functions (negatively-connoted sentiment).

To concisely denote sentiment, we use functional and vec-
tor notation interchangeably, e.g., the logarithmic utility
transformation of concave utility theory, applied to some
u, could be written either as i 7→ ln(1 + ui) or as
⟨ln(1 + u1), ln(1 + u2), . . . , ln(1 + ug)⟩. Furthermore,
indicator functions, i.e., 1a(b) is 1 if b = a or b ∈ a, and
0 otherwise, can also be interpreted as indicator vectors,
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where 1i = j 7→ 1i(j) is the ith standard basis vector.

It is important to acknowledge the implicit assumptions of
this setup. Generally, sentiment vectors arise from real-
world grounded situations that impact each group. By con-
struction, aggregator functions are cardinal, and therefore
impose a preference ordering over sentiment vectors (and
the grounded situations that give rise to sentiment vectors).
The social planner seeks to select a grounded situation (learn
a model) to optimize this preference ordering, and is thus
impartial towards the grounded situation, except insofar as
it impacts each group’s sentiment. This factorization sim-
plifies the question of how to define fairness by avoiding
objective characterization, and instead defining an intersub-
jective concept (shared welfare or malfare function) based
on the subjective experience (sentiment) of each group.

3.1 A Fundamental Basis of Cardinal Welfare Axioms

We now present a reduced basis of cardinal welfare axioms,
which are componentwise-weaker than the standard basis,
yet we find that the same Debreu-Gorman [Debreu, 1959,
Gorman, 1968] type theorems and Pigou-Dalton [Pigou,
1912, Dalton, 1920] characterizations of fairness still hold.

Classical econometric theory primarily describes the un-
weighted case, wherein an aggregator function aggregates
sentiment over an unweighted finite discrete population
G, i.e., G = {1, . . . , g}. We generalize to the weighted
discrete case, wherein an aggregator function operates
on a w-weighted discrete countable population G, i.e.,
g ∈ Z+ ∪ {∞}. We modify the axiomatization of Cousins
[2021], showing that a reduced axiomatic basis is equivalent.

Axiomatization 3.1 (Weighted Aggregator Axioms). We
define axioms for aggregator function M(u;w) below. For
each item, assume (if necessary) that the axiom applies for
all u,u′ ∈ Rg

0+ scalars α, ε ∈ R+, indices i, j ∈ G, and
discrete probability measures w ∈ △g over G.
1) Strict Monotonicity (SM): Suppose u ≻ 0, i.e., each
uj > 0. Then M(u;w) < M(u+ ε1i;w).
2) Weighted Symmetry (WS): For all permutations π over G,
it holds that M(u;w) = M

(
π(u);π(w)

)
.

3) Weighted Decomposability (WD): Suppose α∈(0, 1). Then
M(u;w)=M

(
⟨u1,u1,u2, . . . ⟩; ⟨αw1, (1−α)w1,w2, . . . ⟩

)
.

4) Continuity: M(u;w) is a continuous function in u.
5) Independence of Unconcerned Agents (IUA): If ui=u′

i, then
M(u;w)≤M(u′;w)⇔M(u+ε1i;w)≤M(u′+ε1i;w).
6) Multiplicative Linearity: M(αu;w) = αM(u;w).
7) Unit Scale: M(1;w) = M(i 7→ 1;w) = 1.
8) Weak Transfer Principle (WTP): Let i .

= argmini ui &
j
.
=argmaxj uj . If ui ̸=uj , then ∃ ε> 0 s.t. ui+wjε<

uj−wiε, and W(u+εwj1i−εwi1j ;w)≥W(u;w) for wel-
fare or

W

(u+εwj1i−εwi1j ;w)≤

W

(u;w) for malfare.
Axioms 1–8 are generally assumed in this work, but we
present several alternatives below, to which we compare.
9) Weighted Additivity (WA): Suppose g′∈Z+∪{∞}, u′∈

Rg′

0+, and w′ ∈△g′ s.t. for all u ∈R0+:
∑

i∈G wi1u(ui) =∑
i∈G′ w

′
i1u(u

′
i). Then M(u;w)=M(u′;w′).

10) Pigou-Dalton Transfer Principle (PDTP): If ui+wjε≤
uj−wiε, then W(u+wjε1i−wiε1j ;w)≥W(u;w) for wel-
fare or

W

(u+wjε1i−wiε1j ;w)≤

W

(u;w) for malfare.

We now pause to discuss the rationale behind each axiom.
Axioms 1–5 & 10 generalize the standard basis of axioms
of cardinal welfare to weighted discrete populations, and to-
gether they imply any aggregator function can be expressed
as M(u;w)

.
= F

(∑g
i=1 wif(ui)

)
for strictly monotoni-

cally increasing functions f, F . Axiom 6 is also known
in the constant elasticity of substitution (CES) literature
[Arrow et al., 1961, McFadden, 1963] as homogeneity of
degree one, and it strengthens the final standard basis axiom,
namely independence of common scale, which specifies
the same up to monotonic transformation. Axiom 7 then
characterizes scale, in accordance with average utilitari-
anism [Hurka, 1982], rather than sum utilitarianism, to be
comparable across populations G,G′ of different sizes.

On Weighted Additivity In the unweighted case, it is
standard to define symmetry as simply M(u) = M

(
π(u)

)
for all permutations π over G. With weights, weighted sym-
metry (axiom 2), i.e., M(u;w) = M

(
π(u);π(w)

)
, only

requires equal treatment given equal weights. Weighted
decomposability (axiom 3) then codifies the relative impact
of weights by requiring that a group can be decomposed
into two groups of equal sentiment and total weight without
changing the aggregate. Prior work [Cousins, 2021, 2022]
assumes weighted additivity (axiom 9) directly, but we ar-
gue that this axiom seems rather contrived and unintuitive,
whereas axioms 2 & 3 are so natural that it would be per-
verse not to assume them. We now show that, despite their
simpler form, together axioms 2 & 3 equate to axiom 9.

Lemma 3.2 (Equivalence of Weighted Axioms). Consider
some aggregator function M(·;w). It always holds that WS
(axiom 2) ∧WD (axiom 3)⇔WA (axiom 9).

On Equitable Redistribution and Transfer Principles
The Pigou-Dalton transfer principle (PDTP, axiom 10)
is also standard in cardinal welfare theory. It essentially
states that transferring (dis)utility between two groups is
not harmful, up to the point where the two groups have
equal (dis)utility, thus it incentivizes equitable redistribution
of “wealth.” This codifies the intuition that redistributing
(dis)utility towards equitability is not harmful to society.

One could argue that, while a general trend towards equality
may be good, this characterization of radical equality is too
strong. The weak transfer principle (WTP, axiom 8) is less
impeachable in this regard, as it weakens the quantifier over
transfer magnitude from universal to existential, i.e., it states
only that transferring some nonzero amount of (dis)utility
between the (dis)utility maximizing and minimizing groups
is not harmful. We now show that, subject to the standard
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Debreu-Gorman axioms, the WTP and PDTP are equivalent.

Lemma 3.3 (Transfer Principle Equivalencies). Consider
some aggregator function M(·;w). The following relate
properties (axioms) that M(·;w) obeys.
1) PDTP (10)⇒WTP (8); &
2) Suppose axioms 1–7. Then WTP (8)⇒ PDTP (10).

Note that both the PDTP and WTP are careful to claim
that equitable transfers are not harmful to society, rather
than beneficial. Section 3.3 presents strong variants of these
axioms, which require strict benefit to equitable transfers.

3.2 The Power Mean

We now define the class of weighted power-mean aggregator
functions, and show that our aggregator function axioms are
uniquely satisfied by this class.

Definition 3.4 (Power-Mean Welfare and Malfare). Sup-
pose p ∈ R ∪ ±∞. The weighted power-mean, given senti-
ment vector u ∈ Rg

0+ and weights vector w ∈ △g , is

Mp(u;w)
.
= lim

ρ→p
lim

ε→0+
ρ

√
g∑

i=1

wi(ui + ε)ρ . (1)

Note that in most cases the limits can safely be ignored.
The inner limε→0+ avoids indeterminate forms for p ≤ 0
while preserving continuity. The outer limρ→p resolves to
the weighted geometric mean for p = 0, i.e., M0(u;w) =
limε→0+

∏g
i=1 (ui + ε)

wi , generally termed Nash social
welfare in this context. Similarly, limρ→p resolves to the
maximum and minimum operators for p = ±∞, also known
as egalitarian malfare or welfare, respectively.

We now characterize the class of fair aggregator functions in
a result similar to thm. 2.4 of Cousins [2021], albeit under
our reduced axiomatic basis.

Theorem 3.5 (Aggregator Function Properties). Suppose
aggregator function M(u;w), and assume arbitrary senti-
ment vector u ∈ Rg

0+ and weights vector w ∈ △g . Then:
1) Power-Mean Factorization: Axioms 1–7 imply there
exists some p ∈ R such that M(u;w) = Mp(u;w).
2) Fair Welfare and Malfare: Axioms 1–8 imply p ∈
(−∞, 1] for welfare and p ∈ [1,∞) for malfare.

3.3 Extended and Contextual Axioms

We now present new axioms and stronger variants of the
axioms thus far stated. These generally extend the themes
and justifications of weaker axioms, and thus require a larger
concession to accept, but they have greater descriptive power
and reduce the space of admissible aggregator functions.

Axiomatization 3.6 (Strong Axioms). Suppose as in ax-
iomatization 3.1. We now define two strengthened axioms.
11) Strict Monotonicity at 0 (SM0):M(u;w)<M(u+ε1i;w).
12) Strict Weak Transfer Principle (SWTP): Let i

.
=

argmini ui, j
.
= argmaxj uj . If ui ̸= uj , then there

exists some ε > 0 s.t. ui + wjε < uj − wiε and

W(u + εwj1i − εwi1j ;w) > W(u;w) for welfare, or

W

(u+ εwj1i − εwi1j ;w) <

W

(u;w) for malfare.
13) Strict PDTP (SPDTP): Suppose ui +wjε < uj −wiε.
Then W(u+wjε1i −wiε1j ;w) > W(u;w) for welfare,
or

W

(u+wjε1i −wiε1j ;w) <

W

(u;w) for malfare.

Lemma 3.7 (Consequences of Strong Axioms). Suppose
power-mean aggregator function Mp(·;w). Then:
1) Strengthening the SM axiom (i.e., 1→ 11) implies p > 0.
2) Strengthening the WTP axiom (i.e., 8 → 12) implies
p ̸= 1, thus p < 1 for welfare and p > 1 for malfare.
3) Strict PDTP (i.e., 10→ 13) implies p ̸= 1 and p ̸= ±∞,
thus p ∈ (−∞, 1) for welfare and p ∈ (1,∞) for malfare.

The consequences of SM0 are immense: the “brand name”
Nash social welfare (p = 0) is now inadmissible as a fair
welfare function, and moreover we reduce the unbounded
spectrum of p to just p ∈ (0, 1]. Intuitively, the “strict”
aspect of SM0 encodes the idea that gains to utility should
always be relevant, and consequently prevents a form of
“minority rule,” wherein a group with utility 0 ensures that
welfare can not possibly improve without benefiting said
group. Note that for any p < 1, the weighted relative
impact of helping disadvantaged groups is still higher than
privileged groups (as can be seen by inspecting the power-
mean gradient, see lemma 3.10), but SM0 puts a sharp limit
on the strength of this effect by preventing p ≤ 0.

Under SWTP, pure utilitarianism (p = 1) is inadmissible:
intuitively, transferring any ε utility would, by linearity, not
change welfare, thus not yield strict improvement. In this
sense, SWTP incentivizes equitable redistribution of wealth
more strongly than does WTP. Strengthening of PDTP to
strict inequality is also interesting, but it necessarily pre-
cludes both the utilitarian (p = 1) and egalitarian cases
(p ∈ ±∞), and thus does not actually represent a strict
preference towards egalitarianism.

The following axioms control the “degree of prioritarian-
ism” more precisely than do our transfer principles. Each
describes the behavior of a welfare function under extreme
inequality, where some group has 0 or∞ utility.
Axiomatization 3.8 (Extreme Axioms). Suppose as in ax-
iomatization 3.1. We now define two additional axioms.
14) Zero Barrier (0B): lim

ui→0+
W(u;w) = 0.

15) Finite Ceiling (FC): lim
c→∞

W(u+ c1i;w) <∞.

Nozick [1974] criticizes utilitarianism via reductio ad absur-
dum by positing a “utility monster,” which derives extremely
high utility from some good, and thus utilitarian theory dic-
tates we must allocate all resources to the monster. Our zero
barrier axiom (14) promotes prioritarianism by ensuring
that W(u;w) → 0 as any ui → 0, thus disincentivizing
extreme harm to any group, and bounding the harm caused
by the utility monster. Similarly, the finite ceiling axiom
(15) ensures that even as some ui →∞, W(u;w) remains
finite, i.e., the disadvantaged (finite utility) groups are not
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Figure 1: Plots of the unweighted power-mean for various
p. Observe that the region around x = u1 = 0, wherein
Lipschitz discontinuities may occur, exhibits sharp changes
to welfare, as Mp(⟨x, 1⟩) is sensitive to small changes to x.
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Figure 2: Plots of ∥·∥1 Lipschitz constants of weighted
power-means as functions of p. The region below each Lip-
schitz constant plot is shaded and patterned, to emphasize
that higher values allow for sharper rates of change.

“forgotten” in the monster’s rush toward infinite utility.

Lemma 3.9 (Consequences of Extreme Axioms). Suppose
as in lemma 3.7. The following then hold.
1) 0B (axiom 14)⇔ p ≤ 0. 2) FC (axiom 15)⇔ p < 0.

Observe that, subject to axioms 1–8, FC⇒0B⇒SWTP⇒
WTP. The above “egalitarian” framing of the 0B and FC
axioms is complemented by a “utilitarian” framing, wherein
we would require that taking the utility of any group to 0
does not take welfare to 0, or that taking the utility of any
group to∞ does take welfare to∞, in each case concluding
the complementary set of permissible p in lemma 3.9.

Some authors also assume variants of the Independence
of Irrelevant Alternatives (IIA) axiom, which restricts to
the Nash social welfare [Roth et al., 1977, Kaneko and
Nakamura, 1979], i.e., p = 0. We do not discuss this axiom
further, but note that in our framework, it is equivalent to
jointly assuming axiom 14 and the utilitarian form of 15.

3.4 Continuity Properties of Aggregator Functions

Previous works bound deviations between power-mean mal-
fare functions [Cousins, 2021, 2022], and analyze their Lips-
chitz continuity [Beliakov et al., 2009]. We extend this anal-
ysis to power-mean welfare functions (i.e., p ≤ 1), showing
that they are Lipschitz continuous for p < 0, though not
for p ∈ [0, 1), and the Lipschitz constants depend on the
minimum weight wmin. This is initially surprising, as in-
tuitively, low-weight groups should have little impact on
the power mean, however we know that for p ≤ 0, by
lemma 3.9 item 1, as any group’s sentiment ui → 0, then so
too must Mp(u;w)→ 0, thus as wi → 0, this must occur
more rapidly, hence the dependence on wmin.

While it is not unreasonable to axiomatically assume a
stronger notion of continuity, due to their parameterized
nature, such characterizations lack the elegant simplicity
of our axiomatization. We thus present continuity proper-
ties as consequent from choice of welfare function, rather
than vice versa, to reflect the practical impact of this choice.
We now analyze the local behavior of power means, first
through their gradients, and then their Lipschitz and Hölder
continuity properties. The reader is invited to reference
fig. 1 throughout, wherein various power-means are plotted,
revealing their pathological behavior for p ≈ 0.

Lemma 3.10 (Power-Mean Differentiation). Suppose
u\i ≻ 0, some weights vector w ∈ △g, and p ∈ R. The
power mean then differentiates in ui as follows.
1) If ui > 0, then ∂

∂ui
Mp(u;w) =

wiu
p−1
i

Mp−1
p (u;w)

.
2) If p < 0, then lim

ui→0+

∂
∂ui

Mp(u;w) = −p
√

1
wi
.

3) If p ∈ [0, 1), then lim
ui→0+

∂
∂ui

Mp(u;w) =∞.

Definition 3.11 (Lipschitz and Hölder Continuity). An ag-
gregator function M(u;w) is Hölder continuous in the vari-
able u w.r.t. some norm ∥·∥M over [0, r]g if there exist some
λ ≥ 0, α ∈ (0, 1], s.t. for all u,u′ ∈ [0, r]g , it holds that

|M(u;w)−M(u′;w)| ≤ λ ∥u− u′∥αM . (2)

We say that such a function is λ-α-∥·∥M Hölder continuous,
and if α = 1, it is λ-∥·∥M Lipschitz continuous.

As we assume continuity throughout (axiom 4), all aggrega-
tor functions of interest are tautologically ε-δ limit continu-
ous, however we shall see that they do not all share the same
Hölder and Lipschitz continuity properties. The following
result (visualized in fig. 2) analyzes Lipschitz continuity.

Lemma 3.12 (Power-Mean Lipschitz Continuity). Suppose
p ∈ R, sentiment vectors u,u′ ∈ Rg

0+, and weights vector
w ∈ △g . The following then hold.
1) If p ≥ 1, then Mp(·;w) is p

√
wmax-∥·∥1, 1-Mp(|·|;w),

and 1-∥·∥∞ Lipschitz.
2) If p < 0, then Mp(·;w) is 1

|p|√wmin
-∥·∥∞ Lipschitz.

While p∈ [0, 1) power-means are not Lipschitz continuous
(see lemma 3.10 item 3), we find they are Hölder continuous.
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Figure 3: Illustration of power-mean properties and axioms. Solid lines and filled circles denote values of p that concord
with an axiom or property, while dashed lines and unfilled circles denote their complement. Basic properties (thm. 3.5) and
continuity (lemmata 3.12 & 3.13) are plotted on the left, and extended axioms (lemmata 3.7 & 3.9) are shown on the right.

Lemma 3.13 (Power-Mean Hölder Continuity). Suppose
u ∈ [0, r]g, group index i ∈ G, weights vector w ∈ △g,
and assume where appropriate that ui + ε ≤ r. The power
mean then obeys the following Hölder continuity criteria.
1) Generic Welfare Hölder Condition: Suppose p ≤ 1.
Then |Mp(u+ ε1i;w)−Mp(u;w)| ≤ r1−wiεwi , and
Mp(·;w) is r1−wmin -wmin-∥·∥∞ Hölder continuous.
2) Positive Welfare Hölder Condition: Suppose p ∈ (0, 1].
Then |Mp(u+ ε1i;w)−Mp(u;w)| ≤ r1−pwi

p εp. Fur-
thermore, Mp(·;w) meets the following Hölder conditions:
A) r1−pwmax

p -p-∥·∥1 ;
B) r1−p 1

p -p-M1(|·|;w); &
C) r1−p 1

p -p-∥·∥∞ .

Applications Understanding the response of power-mean
functions to small changes to sentiment, i.e., their gradi-
ents and continuity properties, is highly relevant to privacy,
adversarial robustness, strategy proofness, and statistical
learnability. Due to their commonalities, we briefly treat
the first four here, while sections 4 & 5 explore statistical
learning in detail. To clarify the relationship of our axioms
to these properties, we visualize them in fig. 3.

We assume the parameters or decisions made by some al-
gorithm are robust to small changes to the objective, and
note that Lipschitz or Hölder continuity describe how robust
the objective is to small changes to sampled, estimated, or
queried utility values. Lipschitz continuity is highly relevant
to differential privacy [Bassily et al., 2019, 2020, Wang et al.,
2022, Patel et al., 2022], as differential privacy is sensitive
to changes to algorithm output caused by individual-level
changes. For adversarial robustness and strategy proofness,
if individual-level change is too small to cause harm, Hölder
continuity is powerful, since while cumulative change to
utility is linear in the number of colluders, its impact on
welfare is sublinear, due to the α-power. In particular, un-
der the ε-truthfulness assumption [Meir and Rosenschein,
2011, Meir et al., 2012], agents only lie if doing so yields
at least ε utility. Assuming the objective is Hölder contin-
uous, bounded, and strongly concave, the impact of lying
is bounded, thus lying is disincentivized. We thus conclude
that, via lemmata 3.12 & 3.13, we can analyze the privacy,
stability, and statistical properties of many welfare-based

algorithms for arbitrary power-mean welfare functions.

4 Generalizing Fair-PAC Learning

Suppose now that we seek to estimate or optimize some
welfare function, but do not know the utility values, and
must instead estimate them via sampling (i.e., from data).
We study the plug-in estimator, which approximates the wel-
fare of expected utility values with the welfare of empirical
mean utilities over m samples from each group’s distribu-
tion Di over labeled instance space (X × Y). We assume a
hypothesis classH ⊆ X → Y ′ mapping inputs X to predic-
tion space Y ′, and a utility function u : Y ′ × Y → R0+ that
assesses the quality of prediction ŷ ∈ Y ′ given true label
y ∈ Y , and we thus express the true utility of hypothesis
h ∈ H for group i as EDi

[u ◦ h] and the empirical estimate
of utility as ÊD̂i

[u ◦ h], where (u ◦ h)(x, y) .
= u(h(x), y).

We first show that the estimation error of welfare W(u;w)
may be bounded in terms of the error of each utility value ui.
From there, we bound the sample complexity of optimiza-
tion, and describe a notion of fair-PAC (FPAC) learnabil-
ity for welfare functions, wherein the goal is to uniformly
bound the number of samples required to learn in H. We
abstract away the details of this estimation process by assum-
ing, for each group i, a bound on the supremum deviation
of the expected utility for each h ∈ H, i.e., a bound

∀i : sup
h∈H

∣∣∣∣EDi

[u ◦ h]− Ê̂
Di

[u ◦ h]
∣∣∣∣ ≤ εi . (3)

The details of obtaining such bounds with high probabil-
ity are well-studied, and Cousins [2022] discusses them
under the name additive error vector (AEV) bounds in
group-fairness settings, showing that they can be obtained
via the Chernoff method [Bennett, 1962, Hoeffding, 1963,
Boucheron et al., 2013], Rademacher averages [Bartlett and
Mendelson, 2002, Shalev-Shwartz and Ben-David, 2014,
Cousins and Riondato, 2020], or other such tools. The fol-
lowing result can immediately be applied to any model class
H for which bounds on the supremum deviation are known.
Theorem 4.1 (Hölder Continuity and Welfare Optimal-
ity). Suppose W(·;w) is λ-α-∥·∥W Hölder continuous w.r.t.
some norm ∥·∥W, and error bounds ε that obey (3). Then

sup
h∈H

∣∣∣∣W(i 7→ E
Di

[u ◦ h];w
)
−W

(
i 7→ Ê̂

Di

[u ◦ h];w
)∣∣∣∣≤λ∥ε∥αW.
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Consequently, the empirical welfare maximizer

ĥ
.
= sup

h∈H
W

(
i 7→ Ê̂

Di

[u ◦ h];w
)

approximates the true welfare maximizer

h⋆ .
= sup

h⋆∈H
W

(
i 7→ E

Di

[u ◦ h⋆];w

)
,

in terms of welfare-optimality, as it holds that

W

(
i 7→ E

Di

[u ◦ ĥ];w
)
≥W

(
i 7→ E

Di

[u ◦ h⋆];w

)
− 2λ∥ε∥αW .

This result is easily interpreted and practically relevant.
Furthermore, it is readily applied to any power-mean wel-
fare function via lemmata 3.12 & 3.13, whereas prior work
[Cousins, 2021, 2022] only handles the case of Lipschitz-
continuous aggregator functions.

In PAC-learning, it is standard to analyze the difficulty of
learning as a function of the complexity of the model classH.
To this end, we assumeH is parameterized by D variables
d ∈ RD

0+, e.g., the dimension of a linear classifier [Shalev-
Shwartz and Ben-David, 2014], or for neural networks, a
vector of per-layer widths [Anthony and Bartlett, 2009] or
norm constraints [Bartlett et al., 2017], whereHd denotes
the class parameterized by d. Furthermore, we seek to
know how much data we need to probabilistically learn an
objective to within a given error tolerance ε, rather than
how well we can learn a concept with a given sample size.
Henceforth, a sample complexity function mH(ε, δ, r,d) is
some function such that, for utility range r, any distribution
D, a sample size of at least mH(ε, δ, r,d) ensures that u ◦
H .

= {u ◦ h|h ∈ H} is uniformly convergent, i.e., with
probability at least 1− δ, it holds that

sup
h∈Hd

∣∣∣E
D
[u ◦ h]− Ê̂

D
[u ◦ h]

∣∣∣ ≤ ε . (4)

Similarly, we express the (per-group) sample complex-
ity of uniformly estimating a welfare function W(·;w) as
mW,H(ε, δ, g, r,d), requiring with probability≥ 1−δ, that

sup
h∈Hd

∣∣∣∣W(i 7→ E
Di

[u ◦ h];w
)
−W

(
i 7→ Ê̂

Di

[u ◦ h];w
)∣∣∣∣≤ε . (5)

We now analyze the sample complexity of welfare.

Theorem 4.2 (Welfare Sample Complexity). Suppose sam-
ple complexity function mH(ε, δ, r,d) for hypothesis class
H, and some welfare function W(·;w) that is λ-α-∥·∥∞
Hölder continuous. Then the sample complexity function

mW,H(ε, δ, g, r,d) ≤ mH

(
α
√

ε
λ ,

δ
g , r,d

)
is sufficient, i.e., for at least this many samples per group,
(5) holds. Moreover, for this sample size, with probability at
least 1− δ, the empirical welfare maximizer is 2ε-optimal.

From these uniform generalization error and sample com-
plexity bounds, we can show that classes of welfare func-
tions are FPAC learnable, defined as follows.

Definition 4.3 (Fair-PAC Learning). Suppose hypothesis
classH⊆X→Y ′ parameterized by d∈RD

0+, utility function
u: Y ′×Y→R0+, and welfare classW⊆Rg

0+→R0+. H is
FPAC-learnable w.r.t. u andW if there exists an algorithm
A and sample complexity function mW,H such that for all
1) class parameterizations d;
2) group counts g;
3) per-group instance distributionsD1:g , each over (X ×Y);
4) (weighted) welfare concepts W(·;w) inW;
5) additive approximation errors ε > 0; &
6) failure probabilities δ ∈ (0, 1);
it holds that A can identify a hypothesis ĥ ∈ Hd, i.e.,
ĥ← A(D1:g,W, ε, δ,d), such that
1) for each group, A(D1:g,W, ε, δ,d) draws no more than
mW,H(ε, δ,W, g,d) samples; &
2) with probability at least 1− δ, ĥ obeys

W

(
i 7→ E

Di

[u ◦ ĥ];w
)
≥ sup
h⋆∈Hd

W

(
i 7→ E

Di

[u ◦ h⋆];w

)
−ε .

Furthermore, if mW,H(ε, δ,W, g,d) can be uniformly
bounded for any W(·;w) ∈ W , then we say that H is
uniformly PAC learnable overW w.r.t. u.

With trivial changes to convert the maximization objective to
a minimization objective, this definition can also be applied
to loss functions and classes of malfare functions. In par-
ticular, this definition generalizes the FPAC concept given
by Cousins [2021], which was specified for the class of all
malfare functions satisfying a set of axioms corresponding
to p≥ 1 weighted power-means. We also relax the defini-
tion to allow sample complexity to depend on the welfare
function W(·;w) ∈ W , but our concept of uniform FPAC-
learnability strictly generalizes that of Cousins [2021].

Theorem 4.4 (Characterizing FPAC Learnability). Suppose
some weighted power-mean welfare Wp(·;w), utility func-
tion u with range r, and hypothesis class H with sample
complexity mH(ε, δ, r,d) ∈ Poly( 1ε , log

1
δ , r,d). We then

bound the sample complexity m
.
= mW,H(ε, δ,W, g,d) of

FPAC learningH w.r.t. welfare classW .
= {W(·;w)} as

1) m≤mH
(
α
√

ε
2λ
, δ

g , r,d
)
∈Poly

(
α√
λ, 1

α
√
ε
, log 1

δ , log g, r,d
)
;

2) p ∈ (0, 1]⇒m ∈ Poly
(

p
√
r, 1

p
√
p ,

1
p
√
ε
, log 1

δ , log g,d
)
;

3) p = 0⇒m ∈ Poly
(

wmin
√
r, 1

wmin
√
ε
, log 1

δ , log g,d
)
;

4) p < 0⇒m ∈ Poly
(
1
ε ,

1
|p|√wmin

, log 1
δ , log g, r,d

)
; &

5) for any c∈(0,1), if |p|≥c and the nonnegligibility condi-
tion wmin≥ c

g holds, then m∈Poly
1
c
(
1
c ,

1
ε , g, log

1
δ , r,d

)
.

Observe that the subfamilies of power-mean welfare func-
tions considered in items 2–4 are induced by specific ax-
iomatic choices. In particular, item 2 follows from SM0
(axiom 11), item 3 follows from either IIA or from 0B (ax-
iom 14) and SM0, and item 4 follows from either Lipschitz
continuity and SWTP (axiom 12; to prevent p = 1) or from
FC (axiom 15) — see fig. 3 for visual explication. Similarly,
item 5 follows by assuming nonnegligibility of weights,
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which holds, e.g., for unweighted aggregator functions, and
bounding p away from 0, which may be accomplished in
a variety of ways. We thus conclude that the axiomatic
choices made to restrict the space of welfare functions di-
rectly impact their FPAC-learnability.

The bounds of thm. 4.4 items 1–4 imply FPAC learnabil-
ity, but not uniform FPAC learnability, and exponential
dependencies on α, 1

wmin
, or 1

|p| do appear. It is only in
item 5, for any constant c, that the class is uniformly-FPAC-
learnable. In contrast, using only Lipschitz continuity, it
is straightforward to show that the class of all fair malfare
functions, i.e., any

W

p(·;w) for p ≥ 1, for which α = 1 by
lemma 3.12 item 1, is uniformly FPAC learnable.

In general, if α is bounded away from 0, and mH(ε, δ, r,d)
is polynomial, then the uniform sample complexity of FPAC
learning is also polynomial, and thus FPAC learning in some
sense preserves polynomial learnability.We thus conclude
that FPAC learning with malfare concepts is easier than
FPAC learning with welfare concepts, however under appro-
priate axiomatically-motivated conditions, the gap in sample
complexity between the two settings is polynomial.

Sample-Efficient Learning and Estimation Our study of
FPAC learnability is based on the Lipschitz and Hölder con-
tinuity of power means, which only coarsely describe their
behavior, yielding worst-case sample complexity bounds.
Such bounds may be improved if a priori knowledge re-
garding relative (dis)utility values is available, e.g., under
near-equality, power-mean functions are roughly linear, and
may thus be easier to estimate or optimize. We now briefly
voyage into the world of progressive sampling to show that,
even without such a priori knowledge, efficient learning al-
gorithms can adapt their sample consumption to the inherent
difficulty of the task at hand, which may be substantially less
than the worst-case sample complexity bounds of thm. 4.4.

Without considering the delicate intricacies of probabilistic
reasoning, one might naı̈vely try to iteratively draw one
sample per group, and terminate when welfare is uniformly
estimated or approximately optimized. Unfortunately, this
quickly runs into statistical errors via the multiple compar-
isons problem, as the sampling process is inherently prob-
abilistic. Efficient progressive sampling methods take this
basic idea and account for these issues, but rather than incre-
menting the sample size at each step, they instead increase
the sample size geometrically. Such methods have had great
impact in myriad settings, including statistical data science
[Riondato and Upfal, 2015, Cousins et al., 2020, 2023b],
where estimators query a single distribution, empirical game
theoretic analysis [Viqueira et al., 2020, 2021, Cousins et al.,
2023a], where estimators query a noisy utility oracle at
strategy profiles, and fair machine learning [Cousins, 2022],
wherein fair objectives on model classes are estimated and
optimized by sampling from group-specific distributions.

At a glance, assume our sample complexity bounds scale
as Θ(log 1

δ ). Then, a schedule of length T with uniformly
allocated δ (i.e., one that considers up to T sample sizes,
and takes probability 1− δ

T tail bounds at each) can over-
shoot the sufficient sample size by a constant factor (due to
geometric spacing), and furthermore would need a factor
O(log T ) excess samples to correct for the multiple com-
parisons problem. However, aside from these factors, it is
otherwise as sharp as knowing the (task-specific) minimum
sufficient sample size a priori. Therefore, in cases where
Hölder analysis only loosely bounds sample complexity,
progressive sampling can still adaptively consume about as
many samples as are actually required for the task at hand.

The question remains, “How long must the schedule be?”
In other words, “How large must T be to guarantee a suffi-
cient sample size is reached?” Here our sample complexity
bounds prove invaluable: a geometric schedule must have
length logarithmic in the ratio of maximum to minimum
sufficient sample sizes, both of which are Θ(log Tg

δ ), thus
solving for a minimal sufficient T is straightforward, e.g.,
with Hoeffding’s inequality, a doubling schedule admits

T =

⌈
log2

⌈ 12 (
2rλ
ε )

2
α ln 2|H|Tg

δ ⌉
⌈ 12 ln

2|H|Tg
δ ⌉

⌉
∈Θ

(
1
α log rλ

ε

)
via thm. 4.4 item 1. In general, this progressive sampling
strategy induces an overhead cost factor of

O log log T ⊆O log log
mW,H

(
α
√

ε
λ ,

δ
T , g, r,d

)
log Tg

δ

⊂ log Poly
(

1
|p| ,

1
wmin

, log Poly
(
1
ε , g, r,d

))
(6)

relative to the (unknown) task-specific sufficient sample size.
Note that in (6), even terms exponential in 1

|p| and 1
wmin

in
the FPAC sample complexity bound become logarithmic,
due to the double-logarithm. Thus while welfare functions
may be inherently difficult to estimate, the statistical over-
head of progressive sampling, as compared to drawing a
task-specific sufficient sample, is quite negligible.

5 Experiments

To demonstrate practical relevance, we present a synthetic
experiment on a welfare maximization 1-armed bandit, and
study the sample complexity and sensitivity of welfare esti-
mates to various parameters. In particular, we assume each
pull of the bandit arm gives a single utility sample for each
group, and from empirical mean utilities û, we wish to esti-
mate the welfare W(u;w) as W(û;w). Note that this is a
key step towards regret-optimally selecting among k arms.

We assume groups {g1, g2}, where g1 is the majority and g2
the minority. Utility samples are UNIFORM(ui− 1

2 ,ui+
1
2 )

i.i.d. random variables for each group i. Figure 4 varies
the key parameters of welfare p, minority mean u2, minor-
ity weight w2, and sample size m, in order to study wel-
fare estimation around the particularly challenging p ≈ 0
and wmin ≈ 0 domains. Here empirical utilities ûi
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Figure 4: Estimating the Welfare of a 1-Armed Bandit with Uniform Noise. Each plot studies the response of welfare to one
parameter, and the remaining parameters are selected from p = 0, u = ⟨0.999, 0.001⟩, w = ⟨ 23 ,

1
3 ⟩, and m = 100. All axes

are linear, except 4a, which plots p ∈ [−∞, 1] by transforming x = 1
π arctan(1− p), and 4d, which is logarithmic in x.

have variance 1
12m , but similar results are shown for other

noise models with more complicated variance structure in
appx. B. We present the true welfare and approximate Gaus-
sian ±1σ (68.27%) confidence intervals on empirical wel-
fare, i.e., Wp(u;w) ± λ( 1

12m)
α
2 , where λ, α are as in lem-

mata 3.12 & 3.13. Using 5000 trials over sampled utilities,
we also plot average empirical welfare, and a 68.27% em-
pirical confidence band on empirical welfare. Note that
the Gaussian confidence intervals should ideally contain at
least 68.27% of the empirical welfare samples, since our
continuity bounds are not sharp, which we do observe.

Figure 4a shows the impact of changing p on the welfare.
Observe that Wp(·;w) is monotonic in p, and it is thus no
surprise that all measures of welfare are increasing in p. The
interesting portion of the experiment is that both the 68.27%
approximate Gaussian and empirical confidence intervals
are very wide for p ≈ 0, and narrow as |p| increases. This
concords with the theory of section 3.4, as despite the small
variances of per-group utility estimates, Wp(·;w) for p ≈ 0
remains difficult to estimate. Figure 4b then varies the
minority utility u2, and we find that as u2 → 0, empirical
confidence intervals sharply diverge, due to high sensitivity
to minimum utility, i.e., û2 ≈ 0. In fig. 4c, we vary the
weight of the minority group w2, and find extremely wide
confidence intervals as w2 → 0, since W0(û;w) is very
sensitive to û2 ≈ 0 when w2 ≈ 0, but as w2 → 1

2 , the
estimate of welfare becomes much more stable, as higher
w2 means smaller overall welfare, but less sensitivity to û2.

Figures 4a–4c show pathologically large estimation error
of welfare functions, which when left unchecked causes
models to overfit to disadvantaged groups, then exhibit bias
against them when applied ex vitro. In fig. 4d, we study a
mitigation to this problem, by observing the impact of sam-
ple size m on W0(û;w). Note that by thm. 4.2 the sample
complexity of W0(·;w) estimation is O( 1ε )

2
w2 , whereas for

W1(·;w) it is only O(w2

ε )2, and this asymptotically larger
sample complexity is manifest as slower convergence rates
for all confidence intervals. In all cases, we conclude that an
understanding of the continuity properties of power-mean
functions is crucial to understanding the sample complexity
and estimation error of practical welfare objectives.

6 Conclusion

We show an alternative axiomatic basis for fair aggregator
functions, which we argue is simpler than prior art. We
also draw connections to moral philosophy and econometric
theory to establish stronger axioms, which intuitively guide
modellers on fair objective selection, and theoretically dis-
tinguish between natural classes of welfare functions. In
particular, our (strict) weak transfer principle, zero barrier,
and finite ceiling axioms strengthen arguments for prioritar-
ian (i.e., more egalitarian than utilitarian) fairness concepts
by assuming less and/or concluding more, and our axioms
handling group weights w simplify existing theory.

We then perform a detailed analysis of the Lipschitz and
Hölder continuity of classes of power-mean welfare func-
tions that satisfy our axioms. In particular, we find that our
extended axioms naturally partition the class of power-mean
functions into classes, each of which share Lipschitz or
Hölder continuity properties, which is visually depicted in
fig. 3. We follow with a discussion of applications in privacy,
adversarial robustness, and strategy proofness, finding that
Lipschitz and/or Hölder continuity of welfare are often suf-
ficient to show these properties, and we later experimentally
study the relationship between choice of axioms, welfare
function, data distributions, and the difficulty of estimation.

Finally, we generalize the concept of fair-PAC learning to
arbitrary families of welfare functions. We then show con-
ditions under which fair-PAC learning welfare objectives
has polynomial sample complexity, and is nearly as effi-
cient as fair-PAC learning malfare objectives, improving the
state of the art in utility-based and econometric learning
settings. Moreover, prior work treats only the continuity
and sample-complexity analysis for p ≥ 1 (malfare), and
we show that while p < 1 is more challenging, the difficulty
of learning actually increases smoothly as p→0 from both
directions, yielding intuitive, rigorous, and practically ac-
tionable understanding of learning and estimation problems
over the entire power-mean spectrum. Furthermore, specific
axiomatic choices regarding the class of welfare functions
specify discrete classes with interpretable properties and
desirable fair-PAC learning guarantees, thus establishing a
hierarchy of fair learning settings.
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Appendices
We derive every result stated in the main body in appendix A, and provide supplementary experiments in appendix B.

A Proof Compendium

We now derive all lemmas, theorems, corollaries, and other results stated in the paper body. This appendix is broken into
two subappendices, the first (appendix A.1) shows the properties and relationships between the various axioms of section 3,
and the second (appendix A.2) shows all results in section 4 related to sample complexity and FPAC learning.

A.1 Properties of Axiomatic Aggregator Functions

Before delving into the proofs of all results given in the paper body, we first state a standard result that shows the power-mean
Mp(u;w) is monotonically increasing in p, usually referred to as the power-mean inequality.

Lemma A.1 (Power-Mean Inequality). Suppose −∞ ≤ p ≤ q ≤ ∞. Then for any u ∈ Rg
0+,w ∈ △g , it holds

Mp(u;w) ≤ Mq(u;w) .

We now show lemma 3.2.

Lemma 3.2 (Equivalence of Weighted Axioms). Consider some aggregator function M(·;w). It always holds that WS
(axiom 2) ∧WD (axiom 3)⇔WA (axiom 9).

Proof. Recall the axioms in question:

Weighted Symmetry (WS): For all permutations π over G, it holds that M(u;w) = M
(
π(u);π(w)

)
.

Weighted Decomposability (WD): Suppose α ∈ (0, 1). Then M(u;w) = M
(
⟨u1,u1,u2, . . . ⟩; ⟨αw1, (1−α)w1,w2, . . . ⟩

)
.

Weighted Additivity (WA): Suppose g′ ∈ Z+ ∪ {∞}, u′ ∈ Rg′

0+, and w′ ∈ △g′ s.t. for all u ∈ R0+, it holds that∑
i∈G wi1u(ui) =

∑
i∈G′ w′

i1u(u
′
i). Then M(u;w) = M(u′;w′).

We first show the reverse direction, i.e., WS (axiom 2) ∧WD (axiom 3)⇐WA (axiom 9). Note that the WD holds by
definition, as the two weight terms αw1 and (1− α)w1 that share sentiment u1 in WD are combined within the summation
of WA. Now, observe that WS holds by commutativity of summation over countable sets, thus the LHS and RHS summations
in the WA definitions both remain invariant under arbitrary permutation.

We now show the forward direction, i.e., WS (axiom 2) ∧WD (axiom 3)⇒WA (axiom 9). This result is less direct, but
observe that together, (WS) and (WD) can be used to consolidate the weights of all ui,uj s.t. ui = uj . In particular for
each unique ui, we can produce some unique minimal reduction u⋆ and w⋆ over population G⋆ such that
(1) u⋆

1 < u⋆
2 < u⋆

3 < . . . ;
(2) for all group indices i ∈ G⋆, there exists some j ∈ G such that u⋆

i = uj ; &
(3) for all group indices i ∈ G⋆, it holds w⋆

k =
∑

j∈G wj1u(uj) for some u ∈ R0+.
Now, observe that exactly the same u⋆ and w⋆ are produced by repeating this process for u′ and w′ over population G′,
thus we may conclude that for all u ∈ R0+, it holds that

UNIQUE MINIMAL REDUCTION for u, w︷ ︸︸ ︷∑
i∈G

wi1u(ui) =
∑
i∈G⋆

w⋆

i1u(u
⋆

i ) =
∑
i∈G′

w′
i1u(u

′
i)︸ ︷︷ ︸

UNIQUE MINIMAL REDUCTION for u′, w′

.

We may thus conclude WA.

We now show lemma 3.3.

Lemma 3.3 (Transfer Principle Equivalencies). Consider some aggregator function M(·;w). The following relate properties
(axioms) that M(·;w) obeys.
1) PDTP (10)⇒WTP (8); &
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2) Suppose axioms 1–7. Then WTP (8)⇒ PDTP (10).

Proof. We first show item 1. Observe that the PDTP (10)⇒WTP (8) follows directly, as the PDTP requires that a broad
class of equitable (dis)utility transfers are favorable, whereas the WTP requires only that there exist some (dis)utility transfer
between two particular groups that is favorable.

The conditional reverse implication of item 2 is a bit more subtle. Suppose axioms 1–7. Then, by theorem 3.5 item 1,1 we
may conclude M(u;w) = Mp(u;w) for some p ∈ R. Now, suppose for the sake of argument (shown below) that axiom 8
does not hold for welfare functions with p > 1, or for malfare functions with p < 1. We may thus conclude p ≤ 1 in the
welfare case, and p ≥ 1 in the malfare case, in either case for which axiom 10 is known to hold, which completes the result.

The remaining step is to show that axiom 8 does not hold if p > 1 for welfare functions, or p < 1 for malfare functions.
First, observe that for p ̸= 0, the monotonic transformation pMp

p(u;w) = p
∑g

i=1 wiu
p
i of Mp(u;w) is convex for p > 1,

and concave for 0 ̸= p < 1. Now, for any u ∈ Rg
0+, let i .

= argmini ui and j
.
= argmaxj uj , and suppose some ε > 0

s.t. ui + wjε < uj − wiε. Any “equitable transfer” of the form W(u + εwj1i − εwi1j ;w) obeys W(u + εwj1i −
εwi1j ;w) > W(u;w) for welfare if p > 1. Similarly, an “equitable transfer” of the form

W

(u + εwj1i − εwi1j ;w)
obeys

W

(u+ εwj1i− εwi1j ;w) <

W

(u;w) for malfare if p < 1. Both cases are apparent from the monotonic transform,
as the wi

wi
and wj

wj
weighting terms cancel, leaving only transfers along the curvature of the (·)p power function. In either

case, the WTP is violated, thus we may conclude p ≤ 1 for welfare functions, and p ≥ 1 for malfare functions. Finally, note
that similar logic applies for the case of p = 0, instead using a logarithmic monotonic transform.

We now show theorem 3.5.

Theorem 3.5 (Aggregator Function Properties). Suppose aggregator function M(u;w), and assume arbitrary sentiment
vector u ∈ Rg

0+ and weights vector w ∈ △g . Then:
1) Power-Mean Factorization: Axioms 1–7 imply there exists some p ∈ R such that M(u;w) = Mp(u;w).
2) Fair Welfare and Malfare: Axioms 1–8 imply p ∈ (−∞, 1] for welfare and p ∈ [1,∞) for malfare.

Proof. The key to showing this result is to note that, as mentioned in the text, theorem 2.4 of Cousins [2021] draws the same
conclusion, but under different assumptions. The proof strategy is thus to show that our seemingly weaker assumptions
actually imply (in fact, are equivalent to) the assumptions of the aforementioned result. In particular, for item 1, it suffices to
conclude axioms 1, 4–7 & 9, and for item 2, we need only additionally conclude axiom 10.

We now show item 1. Observe that we assume axioms 1–7 directly, leaving only axiom 9 (WA), which by lemma 3.2, is
implied by axioms 2 & 3. This concludes item 1.

We now show item 2. Observe that after assuming our axioms, we need only show axiom 10 (PDTP), which by
lemma 3.3 item 2, is implied by the assumed axioms 1–7, in conjunction with axiom 8, which is also assumed. This
concludes item 2.

We now show lemma 3.7.

Lemma 3.7 (Consequences of Strong Axioms). Suppose power-mean aggregator function Mp(·;w). Then:
1) Strengthening the SM axiom (i.e., 1→ 11) implies p > 0.
2) Strengthening the WTP axiom (i.e., 8→ 12) implies p ̸= 1, thus p < 1 for welfare and p > 1 for malfare.
3) Strict PDTP (i.e., 10→ 13) implies p ̸= 1 and p ̸= ±∞, thus p ∈ (−∞, 1) for welfare and p ∈ (1,∞) for malfare.

Proof. We first show item 1. First note that the desideratum follows directly from the following claim: “If u ̸= 0 and
mini∈G ui = 0, then (Mp(u;w) = 0)⇔ (p ≤ 0).” In particular, here M(u;w) = M(0;w) = 0 for u ̸= 0 would violate
axiom 11, thus by contraposition, axiom 11 implies p > 0. We thus need only show this claim, which follows via analysis of
the power mean.

It is straightforward to see that since u ̸= 0, it holds p > 0 ⇒ Mp(u;w) > 0, thus by the contrapositive, Mp(u;w) =
0⇒ p ≤ 0. To see the converse, first observe that since mini ui = 0, it holds p = 0⇒ Mp(u;w) = 0. The case of p < 0

1Note that theorem 3.5 makes use of this result to show item 2, but we use only theorem 3.5 item 1 here, thus there is no cyclic
dependency.
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appears to be a bit more subtle, however observe that the power mean is monotonically increasing in p, and thus in this case,
we observe the sandwich inequality

0 = M−∞(u;w) ≤ Mp(u;w) ≤ M0(u;w) = 0 .

It thus holds that, for u ̸= 0, p ≤ 0⇒ Mp(u;w) = 0. Both directions of the bijection of the claim have now been shown,
thus item 1 is complete.

We now show item 2. From theorem 3.5 item 2, we already have p ≤ 1 for welfare and p ≥ 1 for malfare, so in both
cases, all we need do is show p ̸= 1, which we now show via the contrapositive. Now observe that for all ε, it holds that
M1(u + 1iwjε;w) = M1(u − 1jwiε;w), hence for no choice of ε does the transfer result in a strict improvement to
welfare or malfare. We thus conclude p = 1⇒ ¬(axiom 12), hence (axiom 12)⇒ p ̸= 1, which concludes item 2.

We now show item 3. Similar logic to item 2 precludes the case of p = 1 (indeed, observe that this must be so, as SPDTP
implies PDTP, by similar reasoning to that found in the proof of lemma 3.3 item 1), this portion of item 3 is a direct
corollary of item 2. Now, observe that the egalitarian cases p ∈ ±∞ are also inadmissible, essentially because they are
only sensitive to the extreme values of u and thus transfer between any two non-extreme ui,uj , i.e., transfer between i, j
s.t. infk uk < ui < uj < supk uk, has no impact on the egalitarian power means. We thus conclude that under axiom 13
(SPDTP), it holds that p ̸= ±∞.

We now show lemma 3.9.

Lemma 3.9 (Consequences of Extreme Axioms). Suppose as in lemma 3.7. The following then hold.
1) 0B (axiom 14)⇔ p ≤ 0. 2) FC (axiom 15)⇔ p < 0.

Proof. We first show item 1. We first show that 0B (axiom 14)⇒ p ≤ 0. This is clear by contrapositive, as for any p > 0,
it holds Mp(⟨0, 1⟩; ⟨ 12 ,

1
2 ⟩) =

1
21/p

> 0, thus 0B does not hold.

We now show the converse, i.e., p ≤ 0⇒ 0B (axiom 14). In particular, we seek to show that limui→0+ M0(u;w) = 0. We
first address the case of p < 0. Observe that

lim
ui→0+

Mp(u;w) = lim
ui→0+

lim
ε→0+

(
1∑g

i=1
wi

(ui+ε)−p

)− 1
p

DEFINITION 3.4 (POWER MEAN)

=

 1

lim
ui→0+

lim
ε→0+

∑g
i=1

wi

(ui+ε)−p

− 1
p

LIMIT LAWS

=

(
1

∞

)− 1
p

= 0 . LIMIT LAWS

We now address the case of p = 0; in particular, observe that

lim
ui→0+

M0(u;w) = lim
ui→0+

lim
ρ→0

lim
ε→0+

Mρ(u+ ε1;w) DEFINITION 3.4 (POWER MEAN)

= lim
ui→0+

lim
ε→0+

g∏
i=1

(ui + ε)
wi GEOMETRIC MEAN LIMIT

= lim
ui→0+

lim
ε→0+

exp

(
g∑

i=1

wi ln (ui + ε)

)
LOGARITHMIC IDENTITIES

= exp

(
lim

ui→0+
lim

ε→0+

g∑
i=1

wi ln (ui + ε)

)
LIMIT LAWS

= exp(−∞) = 0 . LIMIT LAWS

We thus have that, for any p ≤ 0, it holds limui→0+ M0(u;w) = 0. This completes the converse statement, and thus
concludes item 1.
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We now show item 2. To see this result, first observe that for any u ≻ 0, say, u .
= 1, it holds that limc→∞Mp(u +

c1i;w) = ∞ if and only if p ≥ 0. In particular, this can be seen by observing that, for the forward direction, that
p < 0⇒ Mp(u;w) ≤ p

√
wjuj ≤ ∞ for any j ∈ G, thus p ≥ 0, and for the reverse direction,

M0(u+ c1i;w) = lim
c→∞

(1 + c)wi =∞ ,

and then that M0(u;w) ≤ Mp(u;w) for any p ≥ 0, i.e., lemma A.1. Note that the same would hold for all u if we assumed
p > 0, but not for u s.t. uj = 0 for some j ̸= i if p = 0, however, we only need the existence of a single u for which the
statement holds.

From here, logically, we have that(
∃u ∈ Rg

0+ s.t. lim
c→∞

Mp(u+ c1i;w) =∞
)
⇔ (p ≥ 0) .

Now, observe that, by contraposition of the bijection, it holds that

(p < 0)⇔
(
∀u ∈ Rg

0+ : lim
c→∞

Mp(u+ c1i;w) <∞
)

︸ ︷︷ ︸
FC AXIOM

,

and observe that the RHS is, by definition, the FC axiom.

We now show lemma 3.10.

Lemma 3.10 (Power-Mean Differentiation). Suppose u\i ≻ 0, some weights vector w ∈ △g , and p ∈ R. The power mean
then differentiates in ui as follows.
1) If ui > 0, then ∂

∂ui
Mp(u;w) =

wiu
p−1
i

Mp−1
p (u;w)

.
2) If p < 0, then lim

ui→0+

∂
∂ui

Mp(u;w) = −p
√

1
wi
.

3) If p ∈ [0, 1), then lim
ui→0+

∂
∂ui

Mp(u;w) =∞.

Proof. Observe first that item 1 is an elementary application of the chain, power, and summation rules; the only subtlety to
this result arises in the remaining cases.

We now show item 2. This case is difficult, as naı̈ve application of item 1 results in an indeterminate 0
0 form. An experienced

practitioner of the calculus of infinitesimals may expect results via L’Hôpital’s rule, however in this case, said approach is
unwieldy, and a simple limit calculus argument yields the desideratum much more concisely. Observe now that the result
follows as

lim
ui→0+

∂

∂ui
Mp(u;w) = lim

ui→0+

wiu
p−1
i

Mp−1
p (u;w)

ITEM 1

= lim
ui→0+

wiM
1−p
p

(
j 7→ uj

ui
;w

)
MULTIPLICATIVE LINEARITY

= wi

 g∑
j=1

wj lim
ui→0+

(
uj

ui

)p


1−p
p

LIMIT LAWS

= wi

wi1
p +

g∑
j=1,j ̸=i

wj0
p


1−p
p

LIMIT LAWS

= w
1+ 1−p

p

i = w
1
p

i = −p

√
1

wi
. ALGEBRA

We now show item 3. We split this case into two subcases; namely the p = 0 and p > 0 subcases, essentially because
whether Mp(u;w) = 0 in the limit is of material significance to the proof technique.
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We begin with the p ∈ (0, 1) case. This case is simpler than the case of p = 0, as here Mp(u;w) ̸= 0 in the limit, thus the
difficulty of resolving the 0

0 indeterminate form in the limit vanishes entirely. In fact, in this case we have a finite nonzero
denominator, and an infinite numerator. In particular, we may observe the result as

lim
ui→0+

∂

∂ui
Mp(u;w) = lim

ui→0+

wiu
p−1
i

Mp−1
p (u;w)

ITEM 1

= wi
limui→0+ up−1

i

limui→0+ Mp−1
p (u;w)

LIMIT LAWS

= wiM
1−p
p (u;w)︸ ︷︷ ︸

POSITIVE FINITE

(
lim

ui→0+

1

ui

)1−p

=∞ . ALGEBRA

We now show the case of p = 0. Direct proof is more subtle than for p ∈ (0, 1), but can be derived via reasoning akin to that
of item 2. However, it is much easier to observe that the power mean exhibits continuity in p, and therefore taking limp→0

via either the p < 0 or p ∈ (0, 1) case yields the desideratum.

We now show lemma 3.12.

Lemma 3.12 (Power-Mean Lipschitz Continuity). Suppose p ∈ R, sentiment vectors u,u′ ∈ Rg
0+, and weights vector

w ∈ △g . The following then hold.
1) If p≥1, then Mp(·;w) is p

√
wmax-∥·∥1, 1-Mp(|·|;w), and 1-∥·∥∞ Lipschitz.

2) If p < 0, then Mp(·;w) is 1
|p|√wmin

-∥·∥∞ Lipschitz.

Proof. Items 1 & 2 follow directly from lemma 3.10, and consideration of the curvature and monotonicity of these
functions. Briefly put, observe that malfare functions (i.e., p ≥ 1 weighted power-means) exhibit monotonically-increasing
convexity, thus derivatives increase as ui → ∞, whereas welfare functions (i.e., p ≤ 1 weighted power-means) exhibit
monotonically-increasing concavity, thus derivatives increase as ui → 0+. We now show each result in detail.

We first show item 1. We begin with the p
√
wmax-∥·∥1 Lipschitz property. Observe that for any group index i ∈ G, and any

sentiment value ui > 0, it holds that

∂

∂ui
Mp(u;w) =

wiu
p−1
i

Mp−1
p (u;w)

≤ lim
ui→∞

wiu
p−1
i

Mp−1
p (u;w)

=
wi

w
p−1
p

i

= w
1− p−1

p

i = p
√
wi .

From here, maximizing over group indices yields the p
√
wmax-∥·∥1 Lipschitz characterization.

We now show the 1-Mp(|·|;w) Lipschitz property. Observe that |Mp(u;w)−Mp(u
′;w)| ≤ Mp(|u− u′|;w) follows via

the subadditivity of p ≥ 1 power-mean functions, i.e., they are convex and have the unique zero of Mp(0;w) = 0.

Finally, to see the 1-∥·∥∞ Lipschitz property, observe that Mp(|u− u′|;w) ≤ M∞(|u− u′|;w) = ∥u− u′∥∞, which
follows from monotonicity of the power mean in p, i.e., lemma A.1.

We now show item 2. A 1
|p|√wmin

-∥·∥1 Lipschitz continuity guarantee can easily be seen by maximizing derivatives, via
lemma 3.10 item 2 (note that this limit maximizes the derivative, since the welfare function is concave and increasing). It
may seem surprising that we could get the same Lipschitz constant for ∥·∥∞, however observe that even taking two values
of ui,uj to 0 simultaneously actually results in smaller change, as it is effectively the same as increasing the weight wi of a
single group, thus the same analysis yields an ∥·∥∞ Lipschitz constant.

We now show lemma 3.13.

Lemma 3.13 (Power-Mean Hölder Continuity). Suppose u ∈ [0, r]g, group index i ∈ G, weights vector w ∈ △g, and
assume where appropriate that ui + ε ≤ r. The power mean then obeys the following Hölder continuity criteria.
1) Generic Welfare Hölder Condition: Suppose p ≤ 1. Then |Mp(u+ ε1i;w)−Mp(u;w)| ≤ r1−wiεwi , and Mp(·;w)
is r1−wmin -wmin-∥·∥∞ Hölder continuous.
2) Positive Welfare Hölder Condition: Suppose p ∈ (0, 1]. Then |Mp(u+ ε1i;w)−Mp(u;w)| ≤ r1−pwi

p εp. Further-
more, Mp(·;w) meets the following Hölder conditions:
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A) r1−pwmax

p -p-∥·∥1 ;
B) r1−p 1

p -p-M1(|·|;w); &
C) r1−p 1

p -p-∥·∥∞ .

Proof. Due to the complicated and multifaceted nature of this result, we break the proof into several parts. Before showing
the first item, we begin with two auxiliary results that will prove useful throughout.

We first note that a generic way to show λ-α-|·| Hölder continuity w.r.t. ui is to show that

sup
u,ε

|Mp(u+ ε1i;w)−Mp(u;w)|
εα

≤ λ ,

and similar techniques can be used to analyze Hölder continuity w.r.t. norms over per-group differences.

We now note that due to its scale-dependence, it is often convenient to show local Hölder continuity, i.e., Hölder continuity
over a bounded region. For simplicity, we assume that utility values have range [0, 1], and then extend this analysis to a
larger region through the multiplicative linearity axiom. The remainder of the proof assumes WLOG this range, and the
below analysis is applied to produce the final (range-dependent) result.

Observe that if f(x) exhibits multiplicative linearity (as do all power means, by the multiplicative linearity axiom), and
is λ-α Hölder continuous, then for any r > 0, it holds that x 7→ rf(xr ) is r1−αλ-α Hölder continuous. To see this, first
suppose f(x) exhibits multiplicative linearity and is λ-α Hölder continuous. Then g(x)

.
= rf(xr ) obeys

|g(x)− g(y)|
|x− y|α

=

∣∣rf(xr )− rf(yr )
∣∣

|x− y|α
=

r
∣∣f(xr )− f(yr )

∣∣
rα
∣∣x
r −

y
r

∣∣α = r1−α

∣∣f(xr )− f(yr )
∣∣∣∣x

r −
y
r

∣∣α ≤ r1−αλ .

We now show item 1. We first consider the case of p = 0, i.e., we analyze the Nash social welfare W0(·;w). In this case,
observe that the most rapid change to M0(u;w) occurs as some ui approaches zero, and furthermore, the degree of change
is maximized when each remaining uj = 1, i.e., is maximized (this much is clear from concavity). In particular, for each
i ∈ G, taking α = wi, here we have

sup
u,ε

|M0(u+ ε1i;w)−M0(u;w)|
εwi

≤ 1

εwi

∣∣M0(0+ ε1i + 1G\{i};w)−M0(0+ 1G\{i};w)
∣∣ CONCAVITY

MONOTONICITY

=
1

εwi
exp (wi ln(ε) + (1−wi) ln(1)) DEFINITION OF M0(·;w)

=
1

εwi
exp (wi ln(ε)) = 1 , ALGEBRA

from which we may conclude λ = 1. This is enough to bound the Hölder constants for the ∥·∥1 norm, however observe
that even taking two values of ui,uj to 0 simultaneously actually results in slower growth, as it is effectively the same as
increasing the weight wi, and the Hölder constants are actually higher for smaller weights values wi. We thus conclude that
the same bounds hold for the ∥·∥∞ case.

The above completes item 1 for p = 0, so we now show that the result holds for all p ≤ 1. In other words, we show that
p = 0 is in some sense the “worst case” for small-scale local deviations. To see this, observe that, for any ε > 0, i ∈ G,
it holds that Mp(u + ε1i;w) −Mp(u;w) is decreasing as p → 0, from both the positive and negative sides. We thus
conclude that λ-α-∥·∥ Hölder continuity for M0(u;w) implies the same for Mp(u;w).

We now show item 2. Assume p ∈ (0, 1]. Observe then that

sup
u,ε

|Mp(u+ ε1i;w)−Mp(u;w)|
εp

= sup
ε∈(0,1)

|Mp(⟨ε, 1⟩; ⟨wi, 1−wi⟩)−Mp(⟨0, 1⟩; ⟨wi, 1−wi⟩)|
εp

CONCAVITY
MONOTONICITY

= sup
ε∈(0,1)

(wiε
p + (1−wi))

1
p − (1−wi)

1
p

εp
DEFINITION OF Mp(·;w)

≤ sup
ε∈(0,1)

1
pwiε

p + (1−wi)
1
p − (1−wi)

1
p

εp
SEE BELOW

=
wi

p
. ALGEBRA
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For the step marked SEE BELOW, suppose a, b ≥ 0 s.t. a+ b ≤ 1. Then for all c ≥ 1, it holds that (a+ b)c ≤ ca+ bc. This
algebraic manipulation yields the result.

From here, item A follows immediately, and item B follows via a similar argument (i.e., the total weighted deviation, as
measured by Mp(|·|;w), plays the role of ε). Finally, item C follows from item B by noting that, for any u ∈ Rg

0+ and
weights vector w ∈ △g , it holds that ∥u∥1,w ≤ ∥u∥∞ ≤ ∥u∥1.

A.2 Analysis of Fair-PAC Learning

We now show theorem 4.1.
Theorem 4.1 (Hölder Continuity and Welfare Optimality). Suppose W(·;w) is λ-α-∥·∥W Hölder continuous w.r.t. some
norm ∥·∥W, and error bounds ε that obey (3). Then

sup
h∈H

∣∣∣∣W(i 7→ E
Di

[u ◦ h];w
)
−W

(
i 7→ Ê̂

Di

[u ◦ h];w
)∣∣∣∣≤λ∥ε∥αW.

Consequently, the empirical welfare maximizer

ĥ
.
= sup

h∈H
W

(
i 7→ Ê̂

Di

[u ◦ h];w
)

approximates the true welfare maximizer

h⋆ .
= sup

h⋆∈H
W

(
i 7→ E

Di

[u ◦ h⋆];w

)
,

in terms of welfare-optimality, as it holds that

W

(
i 7→ E

Di

[u ◦ ĥ];w
)
≥W

(
i 7→ E

Di

[u ◦ h⋆];w

)
− 2λ∥ε∥αW .

Proof. The first portion of the result follows directly from the assumption, and the definition of Hölder continuity (defini-
tion 3.11).

The next applies a standard technique in learning theory, wherein the first bound is applied twice: once for h⋆ and once
more for ĥ, alongside the fact that, by definition ĥ realizes the supremum over the empirical welfare. In particular, we have

W

(
i 7→ E

Di

[u ◦ ĥ];w
)
≥W

(
i 7→ Ê̂

Di

[u ◦ ĥ];w
)
− λ∥ε∥αW FIRST PORTION ON ĥ

≥W

(
i 7→ Ê̂

Di

[u ◦ h⋆];w

)
− λ∥ε∥αW W

(
i 7→ Ê̂

Di

[u ◦ ĥ];w
)
≥W

(
i 7→ Ê̂

Di

[u ◦ h⋆];w

)
≥W

(
i 7→ E

Di

[u ◦ h⋆];w

)
− 2λ∥ε∥αW . FIRST PORTION ON h⋆

We now show theorem 4.2.
Theorem 4.2 (Welfare Sample Complexity). Suppose sample complexity function mH(ε, δ, r,d) for hypothesis classH,
and some welfare function W(·;w) that is λ-α-∥·∥∞ Hölder continuous. Then the sample complexity function

mW,H(ε, δ, g, r,d) ≤ mH

(
α
√

ε
λ ,

δ
g , r,d

)
is sufficient, i.e., for at least this many samples per group, (5) holds. Moreover, for this sample size, with probability at least
1− δ, the empirical welfare maximizer is 2ε-optimal.

Proof. This result essentially follows from theorem 4.1 and the definitions of sample complexity and Hölder continuity. By
definition, a sample of size at least mH

(
α
√

ε
λ , δ, r,d

)
ensures a probability 1− δ bound on the supremum deviation for a

single group, and thus by union bound, a sample of size at least mH

(
α
√

ε
λ ,

δ
g , r,d

)
ensures a probability 1− δ on the ∥·∥∞

norm of per-group supremum deviations over all groups, i.e., it shall hold with the above probability that ∥ε∥∞ ≤ α
√

ε
λ .

Then, applying theorem 4.1 yields

sup
h∈Hd

∣∣∣∣W(i 7→ E
Di

[u ◦ h];w
)
−W

(
i 7→ Ê̂

Di

[u ◦ h];w
)∣∣∣∣ ≤ λ∥ε∥α∞ ≤ λ

(
α

√
ε

λ

)α
= ε .

As we have ε-estimated W(·;w) with this sample, we may conclude that mW,H(ε, δ, g, r,d) ≤ mH
(
α
√

ε
λ , δ, r,d

)
. Finally,

the statement about approximate optimality of the empirical welfare maximizer follows from the second portion of
theorem 4.1.
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We now show theorem 4.4.

Theorem 4.4 (Characterizing FPAC Learnability). Suppose some weighted power-mean welfare Wp(·;w), utility function
u with range r, and hypothesis classH with sample complexity mH(ε, δ, r,d) ∈ Poly( 1ε , log

1
δ , r,d). We then bound the

sample complexity m
.
= mW,H(ε, δ,W, g,d) of FPAC learningH w.r.t. welfare classW .

= {W(·;w)} as

1) m ≤ mH
(

α
√

ε
2λ
, δ

g , r,d
)
∈ Poly

(
α√
λ, 1

α
√
ε
, log 1

δ , log g, r,d
)
;

2) p ∈ (0, 1]⇒m ∈ Poly
(

p
√
r, 1

p
√
p ,

1
p
√
ε
, log 1

δ , log g,d
)
;

3) p = 0⇒m ∈ Poly
(

wmin
√
r, 1

wmin
√
ε
, log 1

δ , log g,d
)
;

4) p < 0⇒m ∈ Poly
(

1
ε ,

1
|p|√wmin

, log 1
δ , log g, r,d

)
; &

5) for any c ∈ (0, 1), if |p| ≥ c and the nonnegligibility condition wmin ≥ c
g holds, then m ∈ Poly

1
c
(
1
c ,

1
ε , g, log

1
δ , r,d

)
.

Proof. In each case, the FPAC learning algorithm A(D1:g,W, ε, δ,d) is simply empirical welfare maximization on a
sufficiently large sample, thus we need only bound the size of such a sufficient sample. Each item of this result is essentially
a direct consequence of theorem 4.2, with lemmata 3.12 & 3.13 to bound Lipschitz and Hölder constants. It thus suffices to
bound the constants λ for λ-∥·∥∞ Lipschitz continuity, or λ and α for λ-α-∥·∥∞ Hölder continuity, for each of the classes
under consideration.

In particular, item 1 follows from theorem 4.2 applied to any W(·;w) in the class under consideration. Then, items 2 & 3
follow from item 1, using lemma 3.13 items 2C & 1, respectively, to bound λ and α, and item 4 follows similarly, except
using lemma 3.12 item 2 to bound the Lipschitz constant λ (thus α = 1).

Finally, item 5 is slightly more involved, but again essentially reduces to item 1. In particular, observe that |p| ≥ c means we
need not consider p ≈ 0, and since c is constant, any exponential dependence on c remains polynomial in the remaining
variables. Along with the nonnegligibility condition wmin ≥ c

g , this allows us to control the dependence of the Lipschitz
constant λ for p ≤ −c as λ ≤ 1

|p|√wmin
≤ ( gc )

1
c , thus λ ∈ Poly

1
c (g, 1

c ) for p ≤ −c. Similarly, for p ≥ c, note that for
welfare functions we need only consider p ≤ 1, and observe that for α = c, we have λ = r1−c

c by lemma 3.13 item 2C,
which yields only Poly

1
c ( 1c ,

1
ε ) sample complexity terms. In either case, the desideratum is shown.

B Supplementary Experiments

We now present two additional one-armed bandit experiments using beta and Bernoulli noise models. Here utility samples are
range [0, 1] i.i.d. random variables with mean ui for each group i. For the Bernoulli model, we use BERNOULLI(ui) random
variables, and for the beta model, we use BETA(ui, 1− ui), which acts as continuous approximation of a BERNOULLI(ui)
coin, avoiding issues of discreteness, with exactly half the variance. The main difference here is that the variance of each
estimator is now dependent on ui, being either ui(1−ui)

mi
≤ 1

4mi
in the Bernoulli case, or ui(1−ui)

2mi
≤ 1

8mi
in the beta case,

as opposed to 1
12mi

in the uniform case. For all values of ui sufficiently far from 1
2 , these variance values are much smaller

than under the uniform noise model, so we use only m = 50 samples unless otherwise noted.
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Figure A1: Estimating the Welfare of a 1-Armed Bandit under Bernoulli Noise. Each plot studies the response of welfare to
one parameter, and the remaining parameters are selected from p = 0, u = ⟨0.99, 0.01⟩, w = ⟨ 12 ,

1
2 ⟩, and m = 50. All axes

are linear, except A1a, which plots p ∈ [−∞, 1] by transforming x = 1
π arctan(1− p), and A1d, which is logarithmic in x.
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Figure A2: Estimating the Welfare of a 1-Armed Bandit under Beta Noise. Each plot studies the response of welfare to one
parameter, and the remaining parameters are selected from p = 0, u = ⟨0.99, 0.01⟩, w = ⟨ 12 ,

1
2 ⟩, and m = 50. All axes are

linear, except A2a, which plots p ∈ [−∞, 1] by transforming x = 1
π arctan(1− p), and A2d, which is logarithmic in x.

The remainder of the experimental setup is identical to that under the uniform noise model, as described in section 5. In
particular, we vary the parameters p, minority utility u2, minority group weight w2, and sample size m in order to study
performance around the particularly challenging p ≈ 0 and wmin ≈ 0 domains, and present the results in figures A1 & A2.

The beta and Bernoulli experiments are largely similar to the uniform noise experiment of section 5. In figures A1b & A2b
which adjust the minority group utility u2, we observe that as the minority utility tends to 0, the empirical confidence
intervals remain surprisingly wide, especially when considering that the variance of this coin is extremely small (also tending
to 0). In contrast, as the coin bias tends to 1, confidence intervals get much smaller, as here again variance goes to 0, and
here the welfare function is not sensitive to small changes. Note also that, generally speaking, the lower variances under the
beta noise model (figure A2) result in tighter confidence bounds than the Bernoulli noise model (figure A1).
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