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Abstract

Cardinal objectives like welfare and malfare have re-
cently enjoyed increased attention in fair machine
learning as computationally, statistically, and philo-
sophically sound alternatives to constraint-based meth-
ods. Welfare summarizes utility over a population of
g groups, whereas malfare measures overall disutility.
Subject to standard axioms, both welfare and malfare
functions are restricted to the family of w-weighted p-
power-means, i.e., Mp(u;w)

.
= p
√∑g

i=1 wiu
p

i , with
p ≤ 1 for welfare (utility u), or p ≥ 1 for mal-
fare (disutility u). This work revisits said axioms,
finding that a weaker basis is sufficient to show the
same, and furthermore that strengthening these ax-
ioms partition the welfare half of the spectrum (i.e.,
p ≤ 1) into a few cases by further limiting p. It is
known that p ≥ 1 power means (i.e., malfare func-
tions) are Lipschitz continuous, and thus statistically
easy to estimate or learn (i.e., each ui can be approx-
imated with a sample estimate). We show that all
power means are at least locally Hölder continuous,
i.e., |M(u;w)−M(u′;w)| ≤ λ∥u− u′∥α for some
constants λ > 0, α ∈ (0, 1], and some norm ∥·∥. Fur-
thermore, λ and 1

α are bounded except as p → 0 or
mini wi → 0, and via this analysis we bound the
sample complexity of estimating or optimizing wel-
fare functions. This yields a novel concept of fair-
PAC learning, with dependence on the quantities 1

|p|
and/or 1

wmin
(which measure closeness to the challeng-

ing p = 0 case and inverse minimum group weight,
respectively), wherein fair welfare functions are only
polynomially harder to optimize than fair malfare func-
tions, except when p ≈ 0 or mini wi ≈ 0, which may
be exponentially harder. These challenging cases may
be avoided by assuming the appropriate strengthened
axioms. In all cases, we show that if a bounded quan-
tity is learnable with finite sample complexity, then so
too is the welfare of said quantity. This takes estimat-
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ing and learning welfare objectives to near-parity with
malfare objectives, as although sample complexity may
be larger, all such objectives are uniformly learnable.
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1 Introduction

The recent resurgence of cardinal welfare and malfare based
methods in group-based fairness settings has led to increased
attention as to how to objectively quantify fairness. Welfare
summarizes utility across a population, and is thus suitable
for fair utility-maximization tasks (e.g., bandit problems,
reward-based reinforcement learning [Siddique et al., 2020,
Cousins et al., 2022a], and recommender systems, as well as
utility-based finance and economic settings), whereas mal-
fare measures overall disutility, and is thus directly applica-
ble to fair loss minimization tasks (arguably most machine
learning tasks). The promise of statistical and computational
efficiency differentiates such approaches from constraint-
based fairness methods [Dwork et al., 2012, Zemel et al.,
2013], which often yield hard non-convex optimization prob-
lems, requiring convex relaxations (potentially sacrificing
fairness), as well as inducing statistical quandaries in esti-
mating whether such fairness constraints generalize beyond
the training set [Yona and Rothblum, 2018, Thomas et al.,
2019]. The axiomatic justification for cardinal welfare and
malfare functions also gives them a sense of objectivity,
whereas fairness constraints are often intuitively motivated,
and at times mutually incompatible [Kleinberg et al., 2017,
Friedler et al., 2021]. We find a basis of cardinal welfare
axioms that is weaker than the standard basis, and we then
propose stronger axioms to further specify such functions,
and explore the resulting classes of fair learnability.

It is now well-understood that many problems of unfair-
ness in machine learning are caused at least in part by a
lack of training data for relevant groups [Chen et al., 2018a,
Mehrabi et al., 2021], e.g., an overrepresentation of images
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of whites and males in training data for facial recognition
systems [Buolamwini and Gebru, 2018, Cook et al., 2019,
Cavazos et al., 2020]. While addressing such data biases
is certainly a step in the right direction, we argue that the
objective itself must be selected to appropriately compro-
mise between the wants and needs of various groups, which
may not mutually align.1 Collecting sample sizes propor-
tional to population frequencies of each group and minimiz-
ing empirical risk (average loss) or maximizing empirical
utility seems reasonable, but this is implicitly a utilitarian
perspective, as this strategy is equivalent to maximizing em-
pirical weighted utilitarian welfare or malfare (as a proxy
for their expected values), with the weight of each group i
proportional to the number of training points from group
i. Furthermore, even if one accepts the tenets of utilitarian-
ism (a perfectly valid choice, but one that should be made
consciously, rather than by default), the result is still not nec-
essarily fair, as we risk overfitting to the proportional, but
overall small, amount of data collected for smaller groups.
Our axiomatic approach to fairness rigorously treats the
issue of selecting and optimizing fair objectives, in particu-
lar issues of sample complexity and overfitting to fairness,
whether one’s chosen fairness objective be strictly utilitar-
ian or of a more prioritarian nature. In particular, any given
fair objective effectively specifies how tradeoffs must be
made between groups when disagreements arise between
groups during training (discussed further in section 4.3),
and the utilitarian welfare or malfare is just one of many
axiomatically justifiable choices.

Section 3.1 shows that some of the cardinal welfare or mal-
fare axioms of Cousins [2021] can be relaxed or reorganized
to form a piecewise-weaker equivalent basis (i.e., each of
our axioms is no stronger than an existing standard axiom,
yet their collective effect is equivalent) that is more elegant
and more concise, thus our axiomatization is a more convinc-
ing premise upon which to develop a theory of fair learning.
Subject to these axioms, the w-weighted p-power-mean
family arises as the only axiomatically justified class of fair
aggregator functions, however the parameter space of this
class is quite large, thus the theory does not uniquely specify
an “ideal fairness concept.” Many have argued that exact
human-desirable fairness concepts cannot be fully specified
without unjustifiable assumptions, and that variation in feasi-
ble aggregator function concepts reflects variation in human
morality and social values [Awad et al., 2018, Schneider
and Leland, 2021]. We do not reject this claim, however we
do show in section 3.3 that additional axioms can further
restrict the family of malfare or welfare functions, although
such axioms may be less universal than the standard basis
of cardinal welfare or malfare axioms.

1For example, a learned spellchecker may encounter both UK
English and US English, and the decision to correct, e.g., either
“color” or “colour” is a tradeoff that explicitly harms writers of one
dialect while benefiting writers of the other.

In particular, we propose a stronger variant of strict mono-
tonicity, which precludes both egalitarian and utilitarian
welfare, as well as a relaxation of the Pigou-Dalton [Pigou,
1912, Dalton, 1920] transfer principle, an axiom which char-
acterizes fairness by promoting equitable redistribution of
(dis)utility, as well as a strengthening of it, which specif-
ically characterizes utilitarianism as neutral, rather than
equitable or fair. We also introduce the zero barrier and
finite ceiling axioms, both of which promote a weak form of
egalitarianism (prioritarianism) by restricting the behavior
of welfare functions under extreme inequality.

While welfare maximization and malfare minimization ap-
pear to be two sides of the same coin, salient mathematical
differences arise. We find in section 3.4 that, unlike mal-
fare functions, welfare functions are not always Lipschitz
continuous (though they are at least Hölder continuous),
and not uniformly fair-PAC (FPAC) learnable in the sense
of Cousins [2021]. However, section 4.3 shows that under
a slightly more lenient definition of FPAC learnability, in
which sample complexity (i.e., the sufficient sample size to
approximately optimize an objective over some classH, for
any data distributions, with high probability) is allowed to
depend on the welfare function through the minimum group
weight reciprocal 1

wmin
and/or the quantity 1

|p| (which quan-
tifies how close the welfare function is to the challenging
p = 0 Nash social welfare case), then if H is uniformly
convergent with polynomial sample complexity,H is also
FPAC learnable with polynomial sample complexity.

We then split the power-mean spectrum into regions, the
boundaries of which are defined by our extended axioms,
and show that each is in some sense FPAC learnable. This
work culminates in theorem 4.4, which shows that if a
bounded utility maximization task is PAC-learnable with
polynomial sample complexity, then the corresponding wel-
fare maximization task is FPAC-learnable, with possible
exponential dependence on 1

wmin
or 1

|p| , and otherwise fully-
polynomial sample complexity. We close section 4 by show-
ing that our sample-complexity bounds can be incorporated
into progressive-sampling routines, which adapt their sam-
ple consumption to the difficulty of the task at hand, with
only logarithmic multiplicative overhead.

Our study of fair-PAC learnability is based on the Lipschitz
and Hölder continuity of power means, which only coarsely
describe their behavior. We thus bound worst-case sample
complexity, as such analysis is necessarily focused on behav-
ior under extreme inequality of per-group sentiment, where
small changes to (dis)utility values are most impactful (as
per the Pigou-Dalton transfer principle). Under equality,
power-mean functions behave roughly linearly, and may
thus be much easier to estimate or optimize. We argue that
our worst-case bounds for sample complexity are theoret-
ically interesting and practically significant, as they lend
confidence to the proposition that a machine learning sys-
tem accurately and fairly learns an objective. In section 4.4,
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we argue that the actual inefficiency (excess sample con-
sumption) stemming from our analysis is not necessarily
dependent on the ratio of the best-case to worst-case sample
complexity, as efficient progressive sampling algorithms
(which draw successively larger samples, and terminate
when the objective is estimated or optimized to within some
error tolerance ε) generally depend primarily on the true
sufficient sample size, with an excess factor of the double-
logarithm of this ratio. Consequently, a polynomial gap
between best-case mean estimation and worst case welfare-
estimation bounds translates to only double-logarithmic
overhead, although the exponential gap (dependence on

1
wmin

and/or 1
|p| for p ≈ 0) may translate to a logarithmic

increase in sample complexity (relative to methods that are
given knowledge of the optimal sample size a priori), even
with efficient progressive sampling methods.

For the sake of brevity, all proofs are meticulously derived
in appendix A. In summary, the primary contributions of
this paper are as follows.
1) In section 3.1 we derive a simplified axiomatic basis for
cardinal welfare and malfare functions.
2) We extend the core axiomatic basis in section 3.3 with
optional axioms, which lead to convenient computational
and statistical properties, while enjoying intuitive real-world
interpretations, thus guiding welfare function selection.
3) In section 3.4 we analyze the Lipschitz and Hölder con-
tinuity of power means. We argue that local behavior is
crucial to algorithm analysis, particularly statistical behav-
ior and response to small input perturbations.
4) Section 4 explores the impact of additional axioms on
FPAC learnability. In particular, if we allow sample com-
plexity to depend on 1

wmin
and 1

|p| , additional axioms nat-
urally split the power-mean spectrum into several regions,
and show that each is in some sense FPAC learnable.

2 Related Work

In cardinal fairness learning tasks, we generally receive
training data or feedback from multiple groups, which rep-
resents the needs or wants of each group, and we seek to
maximize welfare or minimize malfare to fairly compro-
mise among groups. Objective choice is a crucial modelling
decision, as it mathematically encodes the values of the
social planner [Sen, 1977, Roberts, 1980, Moulin, 2004].
Due to variation in human values and value systems, we
can’t uniquely characterize fairness with mathematics alone,
however analysis does help to elucidate the limitations and
properties of cardinal objectives. Axiomatic reasoning and
analysis from the econometrics literature informs us as to
the limitations and properties of cardinal objectives [Pigou,
1912, Dalton, 1920, Debreu, 1959, Gorman, 1968]. The
moral philosophy literature also provides insight into so-
cial objectives, from classical utilitarian theory [Bentham,
1789, Mill, 1863], in which all parties are treated as equals,
to prioritarianism, [Parfit, 1997, Arneson, 2000], where

the less-fortunate are given more weight, to egalitarian or
Rawlsian theory [Rawls, 1971, 2001], which considers the
least-fortunate before all others. We also draw from various
critiques of utilitarianism [Nozick, 1974, Hurka, 1982] in
our analysis.

Prior fair learning work in computer science primarily han-
dles the malfare case. In particular, group-DRO (distribu-
tionally robust optimization) methods minimize worst-case
(over groups; i.e., egalitarian) risk [Hu et al., 2018, Oren
et al., 2019, Sagawa et al., 2019, Dong and Cousins, 2022],
which is also known as minimax-fair learning [Diana et al.,
2021, Shekhar et al., 2021, Abernethy et al., 2022] and
by other names [Martinez et al., 2020, Lahoti et al., 2020,
Cortes et al., 2020, Shekhar et al., 2021], and fair-PAC
learning generalizes this idea by optimizing arbitrary power-
mean malfare objectives [Cousins, 2021, 2022, Cousins
et al., 2022a], which derive from an axiomatic welfare the-
ory perspective. Similar algorithmic and statistical concerns
arise in the multi-group agnostic PAC learning setting [Blum
and Lykouris, 2020, Rothblum and Yona, 2021, Cousins,
2022], wherein the goal is to minimize regret (over groups)
w.r.t. needing to compromise on a shared model, rather than
each group selecting their own preferred model. Some au-
thors, e.g., Hu and Chen [2020], do discuss direct welfare
optimization, however they do not treat the resulting sta-
tistical questions or bound generalization error or sample
complexity, and thus the issues we identify with the statisti-
cal difficulty of welfare optimization are not addressed.

As for welfare-theoretic approaches to fair learning, Heidari
et al. [2018] employ axiomatic cardinal welfare theory to
introduce fairness constraints for machine learning tasks,
and Cousins [2021, 2022] generalizes the axioms of cardi-
nal welfare to allow for per-group weight values, explores
computational and statistical learnability, and bounds sam-
ple complexity for the malfare (p ≥ 1) case. Thomas et al.
[2019] also introduce a concept of fair statistical learnabil-
ity, termed the Seldonian learner, which encapsulates both
constraint-based and cardinal objective-based fair learning
settings, however, this framework is so general that it is diffi-
cult to establish classes of learnability. In contrast, by adopt-
ing an axiomatic cardinal-welfare centric viewpoint, we
operate over specific classes of welfare or malfare functions,
which allows us to broadly analyze the sample complexity
of various learning problems.

Outside the sphere of fair learning, similar questions and
tradeoffs arise in fair allocation. In particular, welfare-based
fair allocators must explicitly decide how to allocate a pool
of limited items (resources) to a set of agents given their
valuation (utility) functions over sets of items. In a sense, a
machine learning model is also a resource allocator, where
the resource is the sentiment achieved by each group as a
result of decisions made by the model. Fair allocation prob-
lems generally sidestep the issues of generalization error
and PAC learnability by assuming known utility, but the
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core problems of selecting a fair objective and optimizing
a given fair objective remain. Power-means have recently
seen use as fair objectives in various fair allocation settings.
Barman et al. [2020] show efficient approximation algo-
rithms for unweighted power-means under subadditive valu-
ations, in more restricted classes of submodular valuations,
Viswanathan and Zick [2023] give efficient algorithms to
maximize weighted power-means, and in broader valuation
classes, Cousins et al. [2023b,c] give efficient algorithms to
maximize unweighted power-means.

3 On Axiomatizations of Cardinal Fairness
Objectives

Herein we define aggregator functions, which summarize
overall sentiment (either utility or disutility), expressed
as a sentiment vector u ∈ Rg

0+ over a population of g
groups weighted by weights vector w ∈ △g, where △g

is the nondegenerate probability simplex over g groups,
i.e., w ∈ (0, 1)g and ∥w∥1 = 1. We use M(u;w) to de-
note generic aggregator functions, W(u;w) for welfare
functions (positively-connoted sentiment), and

W

(u;w)
for malfare functions (negatively-connoted sentiment). At
times, we are also interested in unweighted aggregator func-
tions, which take the form M(u), but in all cases, these will
be equivalent to some weighted aggregator function under
a uniform weighting, i.e. M(u) = M′

p(u; ⟨ 1g , . . . ,
1
g ⟩) for

some weighted aggregator function M′(·; ·). We present in
section 3.1 an axiomatic basis of desirable properties that
is weaker (i.e., makes fewer assumptions) than the stan-
dard basis, and in section 3.3, we give additional axioms
and strengthened variants of our basis axioms, which fur-
ther constrain the space of fair aggregator functions. In
section 3.2, we explore the resulting classes of aggregator
functions, and in section 3.4 we further explore various
continuity properties and applications of these classes of
aggregator functions.

To concisely denote sentiment, we use functional and vec-
tor notation interchangeably, e.g., the logarithmic utility
transformation of concave utility theory, applied to some
u, could be written either as i 7→ ln(1 + ui) or as
⟨ln(1 + u1), ln(1 + u2), . . . , ln(1 + ug)⟩. Furthermore,
indicator functions, i.e., 1a(b) is 1 if b = a or b ∈ a, and
0 otherwise, can also be interpreted as indicator vectors,
where 1i = j 7→ 1i(j) is the ith standard basis vector. This
and all other potentially confusing notation pertaining to
aggregator functions is summarized in table 1.

Although this work explicitly considers only group-level
fairness and decision making, this is predominantly for rea-
sons of statistical learnability. Section 4 assumes we can
draw many samples for each group to estimate their senti-
ment while learning across a class H of possible models,
which is reasonable when samples correspond to the in-
dividuals that comprise the group (thus their experiences

are averaged to determine the group’s sentiment), but it is
often unrealistic to assume a learner has access to a large
amount of individual-level data. Philosophically, operating
at the group level also allows us to consider only expected
outcomes over populations, which circumvents the need
to reason about randomness and probabilities of individual
events. These issues aside (e.g., if the outcomes of any
feasible decision were known deterministically), there is no
reason our framework could not be applied to individual-
level fairness; we would need only substitute the word “in-
dividual” for “group,” or equivalently, define the population
of groups as singletons each consisting of exactly one in-
dividual. Note also that the weighted aggregator functions
are implicitly motivated by differences in the relative sizes
of groups, whereas at an individual level, it is generally
desirable to treat all individuals equally, and thus instead
operate with unweighted aggregator functions, but as we
shall see, the axiomatic justification behind unweighted and
weighted aggregator functions are quite similar.

It is important to acknowledge the implicit assumptions of
this setup. Generally, sentiment vectors arise from real-
world grounded situations that impact each group. By con-
struction, aggregator functions are cardinal, and therefore
impose a preference ordering over sentiment vectors (and
the grounded situations that give rise to said sentiment vec-
tors). The social planner seeks to select a grounded situation
(i.e., learn a model) to optimize this preference ordering,
and is thus impartial towards the grounded situation, except
insofar as it impacts each group’s sentiment value. This fac-
torization simplifies the question of how to define fairness
by avoiding objective characterization, and instead defining
an intersubjective concept (shared welfare or malfare func-
tion) based on the subjective experience (sentiment value)
of each group.

This is inherently an “intersubjective consequentialist” per-
spective on ethics, valuing the impact of decisions as per-
ceived by the groups affected by them and agreed upon sys-
tems of compromise, and it thus draws inspiration from the
philosophy of altruistic hedonism (i.e., it seeks to maximize
the pleasure and minimize the pain of everyone). While we
do not explicitly consider other moral and ethical systems,
it is not difficult to modify our framework to accommodate
many such philosophies. In particular, more paternalistic or
prescriptive ethical systems, such as deontological or virtue
ethical systems, can be modeled by modifying the definition
of sentiment to reflect the feelings or opinions of the social
planner (acting as a “morality arbitrator”), rather than those
of the groups impacted by decisions (for example, if truth is
a moral virtue, then a classifier should strive for accuracy,
even if the decisions cause harm and leave each group in a
worse position than would a less accurate model). Similarly,
more solipsistic moral frameworks, e.g., egotistical hedo-
nism (wherein one’s concept of morality aligns with that
which brings them pleasure and avoids bringing them pain),
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Object Definition or Space Description
△g

.
=

{
w ∈ (0, 1)g

∣∣ ∥w∥1 = 1
}

Nondegenerate probability simplex over g atoms
i 7→ fi(ui)

.
=

〈
f1(u1), . . . ,fg(ug)

〉
Functional vector notation

1a(b)
.
= 1 if b ∈ a, 0 otherwise Indicator vector (or function)

1i
.
= j 7→ 1{i}(j) One-hot indicator vector

G Usually {1, . . . , g} Group identity space (e.g., race, gender, or language categories)
g

.
= |G| Group count or cardinality (usually finite)

r ∈ [0,∞] Maximum possible sentiment value (range)
u ∈ [0, r]g Per-group sentiment (utility or disutility), i.e., ui pertains to group i

w ∈ △g Probability weighting over groups (probability simplex)
M(u),W(u),

W

(u) ∈ [0, r]g → R0+ Unweighted aggregator, welfare, or malfare function
M(u;w),W(u;w),

W

(u;w) ∈
(
[0, r]g ×△g

)
→ R0+ Weighted aggregator, welfare, or malfare function

Mp(u;w) See definition 3.4 Weighted power-mean aggregator function

Table 1: Functions, spaces, and common variables for aggregator functions.

can be modelled by changing the social planner from an un-
biased abstract outsider not impacted by their decisions into
a member of the population being impacted that selfishly
makes decisions influenced by their own sentiment.

3.1 A Fundamental Basis of Cardinal Welfare Axioms

We now present a reduced basis of cardinal welfare axioms,
which are componentwise-weaker than the standard basis,
yet we find that the same Debreu-Gorman [Debreu, 1959,
Gorman, 1968] type theorems and Pigou-Dalton [Pigou,
1912, Dalton, 1920] characterizations of fairness still hold.

As a prelude to the dense axiomatic mathematics that will
soon follow, we briefly discuss the goals of such reasoning
and analysis. It is tempting to think that the value in these
axioms derives from their consequent properties, but this
line of reasoning is dangerous, as it may lead to “baxiomatic”
quasireligious thinking, i.e., the pressure to accept the ax-
ioms comes from the convenient or wishful thinking that,
once we do so, we can reason over a convenient space, and
thus normatively refrain from considering any situation out-
side their purview. To remain grounded, we thus argue that
the axioms themselves must be inherently reasonable. This
“I know it when I see it” criterion, however, does lead to a
metric for of the efficacy of an axiomatization: namely, is it
simple enough to be easily understood by rational thinkers,
and are they likely to agree with all parts of it (emphasis on
all, as “most” is not good enough: a single faulty premise
can destroy an entire chain of reasoning)?

For these reasons, in settings of axiomatic reasoning such
as this, elegance and simplicity are paramount, as they lead
to interpretable and uncontroversial axioms. Formal logic
plays a role as well, as showing that A =⇒ B and A ̸= B,
or in other words, B is strictly weaker than A, tells us that
B is less likely to be rejected by any rational thinker than A.
We thus seek to ground our reasoning on a minimal basis
of axioms, each of which cannot be weakened individually
without changing their collective effect. To emphasize the
axiomatization itself, rather than its consequent properties,

we present our axioms in isolation, before stating any of
their resultant properties. We encourage the reader to evalu-
ate them in and of themselves, though occasionally we do
mention specific consequences of various assumptions, in
particular to illustrate concrete differences between weaker
or stronger variants of some axioms.

Classical econometric theory primarily describes the un-
weighted case, wherein an aggregator function M(u) aggre-
gates sentiment u over an unweighted finite discrete pop-
ulation G, i.e., G = {1, . . . , g}. We generalize this setting
to the weighted discrete case, wherein an aggregator func-
tion M(u;w) operates on a w-weighted discrete (possibly
countably infinite) population G, i.e., G = {1, . . . , g}, for
g ∈ Z+ ∪ {∞}. We modify the axiomatization of Cousins
[2021], showing that a reduced axiomatic basis is equivalent.

Axiomatization 3.1 (Weighted Aggregator Axioms). We
define axioms for aggregator function M(u;w) below. For
each item, assume (if necessary) that the axiom applies for
all u,u′ ∈ Rg

0+ scalars α, ε ∈ R+, indices i, j ∈ G, and
discrete probability measures w ∈ △g over G.
1) Strict Monotonicity (SM): Suppose u ≻ 0, i.e., each
uj > 0. Then M(u;w) < M(u+ ε1i;w).
2) Weighted Symmetry (WS): For all permutations π over G,
it holds that M(u;w) = M

(
π(u);π(w)

)
.

3) Weighted Decomposability (WD): Suppose α ∈
(0, 1). Then M(u;w) = M

(
⟨u1,u1,u2, . . . ⟩; ⟨αw1, (1−

α)w1,w2, . . . ⟩
)
.

4) Continuity: M(u;w) is a continuous function in u.
5) Independence of Unconcerned Agents (IUA):If ui=u′

i,
then M(u;w) ≤ M(u′;w) ⇔ M(u+ ε1i;w) ≤ M(u′+
ε1i;w).
6) Multiplicative Linearity: M(αu;w) = αM(u;w).
7) Unit Scale: M(1;w) = M(i 7→ 1;w) = 1.
8) Weak Transfer Principle (WTP): Let i .

=argmini ui &
j
.
=argmaxj uj . If ui ̸=uj , then there exists some ε>0 s.t.

ui+wjε < uj−wiε, and W(u+εwj1i−εwi1j ;w) ≥
W(u;w) for welfare or

W

(u+ εwj1i − εwi1j ;w) ≤

W

(u;w) for malfare.
Axioms 1–8 are generally assumed in this work, but we
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present several alternatives below, to which we compare.
9) Weighted Additivity (WA): Suppose g′∈Z+∪{∞}, u′∈
Rg′

0+, and weights vector w′ ∈ △g′ such that for all u ∈
R0+, it holds that

∑
i∈G wi1u(ui)=

∑
i∈G′ w

′
i1u(u

′
i). Then

M(u;w)=M(u′;w′).
10) Independence of Common Scale (ICS): M(u;w) ≤
M(u′;w) =⇒ M(αu;w) ≤ M(αu′;w).
11) Pigou-Dalton Transfer Principle (PDTP)2: If ui+wjε≤
uj−wiε, then W(u+wjε1i−wiε1j ;w)≥W(u;w) for
welfare or

W

(u+wjε1i−wiε1j ;w)≤

W

(u;w) for mal-
fare.

We now pause to discuss the rationale behind each axiom.
Axioms 1–5 & 11 generalize the standard basis of axioms
of cardinal welfare to weighted discrete populations, and
together they imply that any aggregator function can be
expressed as M(u;w)

.
= F

(∑g
i=1 wif(ui)

)
for strictly

monotonically increasing functions f, F . A similar ba-
sis of axioms pertains to the class of unweighted aggre-
gator functions, i.e., those of the form M(u), where im-
plicitly all weights are equal (which translate to the form
M(u; ⟨ 1g , . . . ,

1
g ⟩) in the weighted nomenclature). In partic-

ular, unweighted variants of axioms 1 & 4–7 simply drop all
weights terms, and are otherwise identical to their weighted
counterparts. Unweighted variants of the remaining axioms
are slightly more involved, and are discussed in turn below.

On Weighted Additivity In the unweighted case, it is
standard to define symmetry as simply M(u) = M

(
π(u)

)
for all permutations π over G. With weights, weighted sym-
metry (axiom 2), i.e., M(u;w) = M

(
π(u);π(w)

)
, only

requires equal treatment given equal weights. Weighted
decomposability (axiom 3) then codifies the relative impact
of weights by requiring that a group can be decomposed
into two groups of equal sentiment and total weight with-
out changing the aggregate. Prior work [Cousins, 2021,
2022] assumes weighted additivity (axiom 9) directly, but
we argue that this axiom seems rather contrived and unin-
tuitive, whereas axioms 2 & 3 are so natural that it would
be perverse not to assume them. We now show that, despite
their vastly simpler form, together axioms 2 & 3 equate to
axiom 9.

Lemma 3.2 (Equivalence of Weighted Axioms). Consider
some aggregator function M(·;w). It always holds that WS
(axiom 2) ∧WD (axiom 3)⇔WA (axiom 9).

On Units, Scale, and Canonical Forms Axiom 6 (mul-
tiplicative linearity) is a natural and useful property, and
ensures that dimensional analysis on aggregator functions is
possible; in particular, units of aggregator functions match

2Cousins [2021, 2022] adopts a seemingly more complicated
variant of this axiom, but it is equivalent for countable pop-
ulations by repeated application. In particular, they take the
following: suppose µ = Ew[u] = Ew[u′], and ∀i ∈ G :
|µ− u′

i| ≤ |µ− ui|. Then W(u′;w) ≥ W(u;w) for welfare,
or W(u′;w) ≤ W(u;w) for malfare.

those of sentiment values. Axiom 6 is also known in the
Constant Elasticity of Substitution (CES) literature [Arrow
et al., 1961, McFadden, 1963] as homogeneity of degree 1.
Note that axiom 6 implies axiom 10, and is thus a simple
strengthening of a more basic traditional cardinal welfare
axiom. Axiom 7 (unit scale) furthers this theme, as it en-
sures that not only do units of aggregates match those of u,
but scale does as well, thus axiom 7 accords with average
utilitarianism Hurka [1982], rather than sum utilitarianism,
as we do not depend on the size of G. Cousins [2021] shows
that these axioms lead to the power-mean characterization
of aggregator functions. Weakening axioms 6 & 7 to just
axiom 10, the Debreu-Gorman theorem still implies a mono-
tonic transform of the power-mean, so axioms 6 & 7 don’t
impact comparisons between aggregator values, but merely
specify a convenient and elegant canonical form for their
cardinal values.

On Equitable Redistribution and Transfer Principles
The Pigou-Dalton transfer principle (PDTP, axiom 11)
is also standard in cardinal welfare theory. It essentially
states that transferring (dis)utility between two groups is
not harmful, up to the point where the two groups have
equal (dis)utility, thus it incentivizes equitable redistribution
of “wealth.” This codifies the intuition that redistributing
(dis)utility towards equitability is not harmful to society.

One could argue that, while a general trend towards equality
may be good, this characterization of radical equality is too
strong. The weak transfer principle (WTP, axiom 8) is less
impeachable in this regard, as it weakens the quantifier over
transfer magnitude from universal to existential, i.e., it states
only that transferring some nonzero amount of (dis)utility
between the (dis)utility maximizing and minimizing groups
is not harmful, making no claim about the remaining groups,
or the magnitude of the transfer. We now show that, subject
to the standard Debreu-Gorman axioms, the WTP and PDTP
are equivalent, thus the radical equality characterization of
the PDTP is not necessary in this context.

Lemma 3.3 (Transfer Principle Equivalencies). Consider
some aggregator function M(·;w). The following relate
properties (axioms) that M(·;w) obeys.
1) PDTP (11) =⇒ WTP (8); &
2) Suppose axioms 1–7. Then WTP (8) =⇒ PDTP (11).

Note cautiously that both the PDTP and WTP are careful
to claim that equitable transfers are not harmful to society,
rather than beneficial. Section 3.3 presents strong variants
of these axioms, which require strict benefit to equitable
transfers. To obtain unweighted variants of the transfer prin-
ciple axioms, we again simply substitute in uniform weights,
but here this results in some elegant simplifications. In par-
ticular, the WTP and PDTP assume (either existentially or
universally) some ε > 0 such that ui +wjε and uj −wiε
obey some relationship. Observe that all weighting terms
essentially cancel, and we now recover the guarantee for the
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change-of-variables ε′ = 1
g ε, since wjε = wiε = ε′.

3.2 The Power Mean

We now define the class of weighted power-mean aggregator
functions, and show that our aggregator function axioms are
uniquely satisfied by this class.

Definition 3.4 (Power-Mean Welfare and Malfare). Sup-
pose p ∈ R ∪ ±∞. The weighted power-mean, given sen-
timent vector u ∈ Rg

0+ and weights vector w ∈ △g, is
defined as

Mp(u;w)
.
= lim

ρ→p
lim

ε→0+
ρ

√
g∑

i=1

wi(ui + ε)ρ . (1)

Note that in most cases the limits can safely be ignored.
The inner limε→0+ simply avoids indeterminate forms for
p ≤ 0 while some ui = 0 while preserving continuity.
The outer limρ→p resolves to the weighted geometric mean
for p = 0, i.e., M0(u;w) = limε→0+

∏g
i=1 (ui + ε)

wi ,
generally termed Nash social welfare in this context. Sim-
ilarly, limρ→p resolves to the unweighted maximum and
minimum operators for p = ±∞, also known as egalitarian
malfare or welfare, respectively. We omit the weighting w
to denote unweighted power-means, which are equivalent
to weighted power-means under a uniform weighting, i.e.
Mp(u) = Mp(u; ⟨ 1g , . . . ,

1
g ⟩).

We now characterize the class of fair aggregator functions
in a result similar to theorem 2.4 of Cousins [2021], albeit
under our reduced axiomatic basis.

Theorem 3.5 (Aggregator Function Properties). Suppose
aggregator function M(u;w), and assume arbitrary senti-
ment vector u ∈ Rg

0+ and weights vector w ∈ △g. The
following then hold.
1) Power-Mean Factorization: Axioms 1–7 imply there
exists some p ∈ R such that M(u;w) = Mp(u;w).
2) Fair Welfare and Malfare: Axioms 1–8 imply p ∈
(−∞, 1] for welfare and p ∈ [1,∞) for malfare.

3.3 Extended and Contextual Axioms

We now present new axioms and stronger variants of the
axioms thus far stated. These generally extend the themes
and justifications of weaker axioms, and thus require a larger
concession to accept, but they have greater descriptive power
and reduce the space of admissible fair aggregator functions.

Axiomatization 3.6 (Strong Axioms). Suppose as in axiom-
atization 3.1. The following two axioms strengthen various
components of axiomatization 3.1.
12) Strict Monotonicity at 0 (SM0): M(u;w) < M(u+
ε1i;w).
13) Strict Weak Transfer Principle (SWTP): Let i

.
=

argmini ui, j
.
= argmaxj uj . If ui ̸= uj , then there

exists some ε > 0 s.t. ui + wjε < uj − wiε and
W(u + εwj1i − εwi1j ;w) > W(u;w) for welfare, or

W

(u+ εwj1i − εwi1j ;w) <

W

(u;w) for malfare.

14) Strict PDTP (SPDTP): Suppose ui +wjε < uj −wiε.
Then W(u+wjε1i −wiε1j ;w) > W(u;w) for welfare,
or

W

(u+wjε1i −wiε1j ;w) <

W

(u;w) for malfare.

Lemma 3.7 (Consequences of Strong Axioms). Suppose
power-mean aggregator function Mp(·;w). The following
then hold:
1) Strengthening the SM axiom (i.e., 1→ 12) implies p > 0.
2) Strengthening the WTP axiom (i.e., 8 → 13) implies
p ̸= 1, thus p < 1 for welfare and p > 1 for malfare.
3) Strict PDTP (i.e., 11→ 14) implies p ̸= 1 and p ̸= ±∞,
thus p ∈ (−∞, 1) for welfare and p ∈ (1,∞) for malfare.

We now comment on the philosophical implications of
lemma 3.7. The consequences of SM0 are immense: the
“brand name” Nash social welfare (p = 0) is now inadmissi-
ble as a fair welfare function, and moreover we reduce the
unbounded spectrum of p to just p ∈ (0, 1]. Intuitively, the
“strict” aspect of SM0 encodes the idea that gains to utility
should always be relevant, and consequently prevents a form
of “minority rule,” wherein a group with utility 0 ensures
that welfare can not possibly improve without benefiting
said group. Note that for any p < 1, the weighted relative
impact of helping disadvantaged groups is still higher than
privileged groups (as can be seen by inspecting the power-
mean gradient, see lemma 3.10), but SM0 puts a sharp limit
on the strength of this effect by preventing p ≤ 0.

Under SWTP, pure utilitarianism (p = 1) is inadmissible:
intuitively, transferring any ε utility would, by linearity, not
change welfare, thus not yield strict improvement. In this
sense, SWTP incentivizes equitable redistribution of wealth
more strongly than does WTP. Strengthening of PDTP to
strict inequality is also interesting, but it necessarily pre-
cludes both the utilitarian (p = 1) and egalitarian cases
(p ∈ ±∞), and thus does not actually represent a strict
preference towards egalitarianism.

The following axioms control the “degree of prioritarian-
ism” more precisely than do our transfer principles. Each
describes the behavior of a welfare function under situations
of extreme inequality, where some group receives 0 or∞
utility.
Axiomatization 3.8 (Extreme Axioms). Suppose as in ax-
iomatization 3.1. We now define two additional axioms.
15) Zero Barrier (0B): lim

ui→0+
W(u;w) = 0.

16) Finite Ceiling (FC): lim
c→∞

W(u+ c1i;w) <∞.

Nozick [1974] criticizes utilitarianism via reductio ad absur-
dum by positing a “utility monster,” which derives extremely
high utility from some good, and thus utilitarian theory dic-
tates we must allocate all resources to the monster. Our zero
barrier axiom (15) promotes prioritarianism by ensuring
that welfare W(u;w)→ 0 as any group utility ui → 0, a
property shared by the egalitarian welfare, and furthermore,
the zero barrier axiom incentivizes aiding the most needy
by creating a “barrier” at 0 utility, thus disincentivizing ex-
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Figure 1: Plots of the unweighted power-mean (i.e., w .
=

⟨ 12 ,
1
2 ⟩) for various p. Observe that the region around

x = u1 = 0, wherein Lipschitz discontinuities may oc-
cur, exhibits sharp changes to welfare, as Mp(⟨x, 1⟩) is very
sensitive to small changes to x.

treme harm to any group, and bounding the harm caused
by the utility monster. Similarly, the finite ceiling axiom
(16) ensures that even as some ui →∞, W(u;w) remains
finite, i.e., the disadvantaged (finite utility) groups are not
“forgotten” in the monster’s rush toward infinite utility (and
infinite inequality).

Lemma 3.9 (Consequences of Extreme Axioms). Suppose
as in lemma 3.7. The following then hold.
1) 0B (axiom 15)⇔ p ≤ 0. 2) FC (axiom 16)⇔ p < 0.

Observe that, subject to axioms 1–8, FC =⇒ 0B =⇒
SWTP =⇒ WTP. The above “egalitarian” framing of
the 0B and FC axioms is complemented by a “utilitarian”
framing, wherein we would require that taking the utility
of any group to 0 does not take welfare to 0, or that taking
the utility of any group to ∞ does unboundedly increase
welfare, in each case concluding the complementary set
of permissible p in lemma 3.9, though again such axioms
codify intuition, but can not dictate the “correct” welfare
function.

Some authors also assume variants of the Independence
of Irrelevant Alternatives (IIA) axiom, which restricts to
the Nash social welfare [Roth et al., 1977, Kaneko and
Nakamura, 1979], i.e., p = 0. We do not discuss this axiom
further, but note that in our framework, it is equivalent to
jointly assuming axiom 15 and the utilitarian form of 16.

3.4 Continuity Properties of Aggregator Functions

Another axiom that can be strengthened to great effect is the
continuity axiom. Myriad varieties of continuity exist, and
we investigate the Hölder and Lipschitz varieties in great de-
tail here. In particular, while it does make sense in principle
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Figure 2: Plots of ∥·∥1 Lipschitz constants of weighted
power-means for various weightings as functions of p.
Note that sup

u≻0
∥∇uMp(u;w)∥1 = sup

u,u′≻0

|M(u;w)−M(u′;w)|
∥u−u′∥1

describes this Lipschitz constant, as M(·;w) is assumed
to be continuous, and for any w, this quantity approaches
1 as p→ ±∞ (plotted as a dashed line).The region below
each Lipschitz constant plot is shaded and patterned, to em-
phasize that higher values allow for sharper rates of change
to the power-mean functions.

to axiomatically assume a stronger notion of continuity, due
to their parameterized nature, such characterizations lack
the elegant simplicity of our axiomatization. We present
the material in this manner, so as to emphasize the con-
sequences of choice of aggregator function on continuity,
rather than how the act of assuming continuity impacts the
aggregator function.

Previous works bound deviations between power-mean mal-
fare functions [Cousins, 2021, 2022], and analyze their Lips-
chitz continuity [Beliakov et al., 2009]. We extend this anal-
ysis to power-mean welfare functions (i.e., p ≤ 1), showing
that they are Lipschitz continuous for p < 0, though not
for p ∈ [0, 1), and the Lipschitz constants depend on the
minimum weight wmin. This is initially surprising, as in-
tuitively, low-weight groups should have little impact on
the power mean, however we know that for p ≤ 0, by
lemma 3.9 item 1, as any group’s sentiment ui → 0, then so
too must the power mean Mp(u;w)→ 0, thus as wi → 0,
this must occur more rapidly, hence the dependence on
wmin.

While it is not unreasonable to axiomatically assume a
stronger notion of continuity, due to their parameterized
nature, such characterizations lack the elegant simplicity of
our axiomatization. We thus present continuity properties as
consequent from choice of welfare function, rather than vice
versa, to reflect the practical impact of this choice. We now
analyze the local behavior of power means, first through
their gradients, and then their Lipschitz and Hölder conti-
nuity properties. The reader is invited to reference figure 1
throughout, wherein various power-means are plotted, re-
vealing their pathological and highly nonlinear behavior for
p ≈ 0.
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Figure 3: Illustration of power-mean properties and axioms. Solid lines and filled circles denote the values of p that concord
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and continuity (lemmata 3.12 & 3.13) are plotted on the left, and the consequences of our strong and extended axioms
(lemmata 3.7 & 3.9) are shown on the right.

Lemma 3.10 (Power-Mean Differentiation). Suppose
u\i ≻ 0, some weights vector w ∈ △g, and p ∈ R. The
power mean then differentiates in ui as follows.
1) If ui > 0, then ∂

∂ui
Mp(u;w) =

wiu
p−1
i

Mp−1
p (u;w)

.

2) If p < 0, then lim
ui→0+

∂
∂ui

Mp(u;w) = −p
√

1
wi
.

3) If p ∈ [0, 1), then lim
ui→0+

∂
∂ui

Mp(u;w) =∞.

Definition 3.11 (Lipschitz and Hölder Continuity). An ag-
gregator function M(u;w) is Hölder continuous in the vari-
able u w.r.t. some norm ∥·∥M over domain [0, r]g if there
exist some scale λ ≥ 0 and power α ∈ (0, 1], such that for
all u,u′ ∈ [0, r]g , it holds that

|M(u;w)−M(u′;w)| ≤ λ ∥u− u′∥αM . (2)

We say that such a function is λ-α-∥·∥M Hölder continuous,
and if α = 1, it is λ-∥·∥M Lipschitz continuous, and if λ ≤ 1
it is ∥·∥M nonexpansive.

Intuitively, Lipschitz continuity bounds infinitessimal rates
of change, and Hölder continuity bounds change over small
regions, where the relative size of the change grows larger
as ∥·∥M → 0+. The relationship between Lipschitz, Hölder,
and standard ε-δ limit continuity for range r ∥·∥M is

λ Lipschitz =⇒ λr−α-α Hölder =⇒ ε-δ Limit .

As we assume continuity throughout (axiom 4), all aggre-
gator functions of interest are tautologically ε-δ limit con-
tinuous, however we shall see that they do not all share the
same Hölder and Lipschitz continuity properties, which has
crucial implications for sampling and learning from data,
as well as privacy and algorithmic stability. The following
result (visualized in figure 2) analyzes Lipschitz continuity.

Lemma 3.12 (Power-Mean Lipschitz Continuity). Suppose
p ∈ R, sentiment vectors u,u′ ∈ Rg

0+, and weights vector
w ∈ △g . The following then hold.
1) Suppose p ≥ 1. Then Mp(·;w) is p

√
wmax-∥·∥1, 1-

Mp(|·|;w), and 1-∥·∥∞ Lipschitz.
2) Suppose p < 0. Then Mp(·;w) is 1

|p|√wmin
-∥·∥∞ Lips-

chitz.

While the p∈ [0, 1) power-means are not Lipschitz contin-
uous (see lemma 3.10 item 3), we find that they are still

Hölder continuous, which largely results in similar enough
properties for our purposes.

Lemma 3.13 (Power-Mean Hölder Continuity). Suppose
u ∈ [0, r]g, group index i ∈ G, weights vector w ∈ △g,
and assume where appropriate that ui + ε ≤ r. The power
mean then obeys the following Hölder continuity criteria.
1) Generic Welfare Hölder Condition: Suppose p ≤ 1.
Then |Mp(u+ ε1i;w)−Mp(u;w)| ≤ r1−wiεwi , and
Mp(·;w) is r1−wmin -wmin-∥·∥∞ Hölder continuous.
2) Positive Welfare Hölder Condition: Suppose p ∈ (0, 1].
Then |Mp(u+ ε1i;w)−Mp(u;w)| ≤ r1−pwi

p εp. Fur-
thermore, Mp(·;w) meets the following Hölder conditions:
A) r1−pwmax

p -p-∥·∥1 ;
B) r1−p 1

p -p-M1(|·|;w); &
C) r1−p 1

p -p-∥·∥∞ .

Applications Understanding the response of power-mean
functions to small changes to sentiment, i.e., their gradi-
ents and continuity properties, is highly relevant to privacy,
adversarial robustness, algorithmic stability, strategy proof-
ness, and statistical learnability. Due to their commonali-
ties, we briefly treat the first four here, while sections 4 & 5
theoretically and experimentally explore statistical learning
in detail. To clarify the relationship of our axioms to these
properties, we visualize them in figure 3.

We first assume that the parameters or decisions made by
some algorithm are robust to small changes to the objec-
tive (welfare), and note that Lipschitz or Hölder continuity
describe how robust the objective is to small changes to
sampled, estimated, or queried per-group utility values.3

Lipschitz continuity is highly relevant to differential pri-
vacy [Bassily et al., 2019, 2020, Wang et al., 2022, Patel
et al., 2022], as differential privacy is sensitive to changes to
algorithm output caused by individual-level changes, thus
sensitivity to infinitesimal change is paramount.

For algorithmic stability, adversarial robustness, and strat-

3Note that this applies to some classes of stable algorithms and
objectives. For example, algorithms maximizing strongly concave
welfare functions can only boundedly change the optimal parame-
ters or output under bounded change to the objective function.
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egy proofness, if individual-level change is too small to
cause harm, Hölder continuity is powerful, since while cu-
mulative change to utility is linear in the number of collud-
ing parties, its impact on welfare is sublinear, due to the
α-power. In other words, here individuals may be powerful,
but the cumulative effect of collusion is less than the sum of
its parts.

In the context of algorithmic stability for convex optimiza-
tion, it is well-known that if the gradient is bounded and
Lipschitz continuous (i.e., the function is smooth), we ob-
tain desirable bounds on the generalization error and com-
putational cost of (stochastic) gradient descent methods.
Unfortunately, even if the underlying per-group sentiment
functions are smooth with bounded gradient, these proper-
ties are not necessarily preserved by the power-mean (e.g.,
egalitarian objectives create nondifferentiabilities where the
maximum or minimum sentiment group changes). How-
ever, more recent work [Lei and Ying, 2020] shows that a
Hölder continuous gradient also suffices: in particular, it
suffices to have ∥∇θM(u(θ);w)−∇θM(u(θ′);w)∥2 ≤
λ∥θ − θ′∥α2 . This condition is a bit more subtle than that
which we consider, but observe that it may be bounded for
appropriate model classes (which define the space of θ) us-
ing lemmata 3.10 & 3.13 and the classical chain rule from
the calculus of infinitesimals.

Outside of some convenient median-based constructs, e.g.,
linear regression under absolute loss [Chen et al., 2018b],
true strategy-proofness in learning settings can be quite dif-
ficult to achieve [Procaccia, 2008]. However, under the
ε-truthfulness assumption [Meir and Rosenschein, 2011],
agents only lie about their labels if they gain at least ε utility
(or lose at least ε disutility) by doing so. In this setting, the
above robustness analysis is relevant, as we have effectively
shown that, assuming bounded loss values, Hölder continu-
ity implies that small colluding groups have small impact
on the objective, and thus (assuming, e.g., strong convexity
in the neighborhood of the optimal h⋆) lying only weakly
impacts ĥ. Therefore, if the hypothesis spaceH is continu-
ous (e.g., bounded linear regression, but not discrete linear
classification), they can not strongly benefit from doing so.
We thus conclude that robustness and stability, which are
preserved by Hölder continuous objectives, are sufficient
for ε-truthful strategy-proofness in some learning settings.
We thus conclude that, via lemmata 3.12 & 3.13, we can
analyze the privacy, stability, and statistical properties of
many welfare-based algorithms for arbitrary power-mean
welfare functions.

4 Generalizing Fair-PAC Learning

Suppose now that we seek to estimate or optimize some
welfare function, but do not know the utility values of each
group, and must instead estimate them via sampling (i.e.,
from data). We predominantly study the plug-in estimator,

which approximates the welfare of expected utility values
with the welfare of empirical mean utilities over m samples
from each group’s instance distribution Di over labeled
instance space (X ×Y), i.e., features x ∈ X and labels y ∈
Y . We assume a hypothesis class H ⊆ X → Y ′ mapping
inputs X to prediction space Y ′, and a utility function u :
Y ′ × Y → R0+ that assesses the quality of prediction ŷ ∈
Y ′ given true label y ∈ Y , and we thus express the true
utility of hypothesis h ∈ H for group i as EDi

[u ◦ h] and
the empirical estimate of utility as ÊD̂i

[u ◦ h], where (u ◦
h)(x, y)

.
= u(h(x), y). Notation introduced in this section

is summarized in table 2.

We first briefly outline computational concerns and build
intuition for welfare optimization and FPAC learning in
section 4.1. We then discuss asymptotic convergence
and the fundamentals of statistical estimation of W(i 7→
EDi

[u ◦ h];w) for a single function h in section 4.2. Sec-
tion 4.3 then introduces and analyzes a concept of fair-PAC
learnability, showing worst-case bounds on the sample com-
plexity of estimating and optimizing welfare functions over
a function family H. Finally, section 4.4 discusses apply-
ing progressive sampling techniques to adaptively query
to avoid worst-case sample complexity, and instead near-
optimally sample to address a given optimization task.

4.1 On Compromise and Fair Learning

In standard supervised learning or risk minimization set-
tings, given distribution D over X × Y , we generally seek
to approximate

h⋆ .
= argmin

h∈H
E

(x,y)∼D

[
−(u ◦ h)(x, y)

]
,

whereas in FPAC learning, we seek to approximate

h⋆ .
= argmax

h∈H
W

(
i 7→ E

(x,y)∼Di

[
(u ◦ h)(x, y)

]
;w

)
.

The change of sign is entirely superficial, and standard first-
order convex optimization techniques can be applied in
either setting [Cousins, 2021], assuming appropriate struc-
ture of u ◦ H .

= {u ◦ h|h ∈ H} and the model parameters
θ, but the impact of the welfare function and the per-group
distributions on both h⋆ and the optimization dynamics are
worth discussing.

Ideally, we would be able to optimize a model by making
only local modifications that benefit all groups, but in gen-
eral this is not realistic. Often decisions must be made dur-
ing training that benefit some groups while harming others,
which we term “disagreement.” Disagreement arises locally,
on the scale of individual changes made to the model during
gradient updates, but also globally, in the sense that the
overall model learned is a compromise between the wants
and needs of each group. Some sources of disagreement
are obvious, such as two groups disagreeing on how to clas-
sify a contiguous region of X , but others are subtler. For
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Object Definition or Space Description
X ,Y,Y ′ — Supervised prediction domain, label space, and codomain

h ∈ X → Y ′ Hypothesis (possible supervised learning model)
H ⊆ X → Y ′ Hypothesis class (class of possible supervised learning models)

u(ŷ, y) ∈ Y ′ × Y → [0, r] Utility function (score prediction ŷ given true label y)
u ◦ h (u ◦ h)(x, y) .

= u(h(x), y), ∈ (X × Y) → [0, r] Utility composition
u ◦ H .

=
{
u ◦ h

∣∣h ∈ H
}

, ⊆ (X × Y) → [0, r] Utility class (composition of utility function and hypothesis class)
Di Over (X × Y) Distribution over (X ,Y) pairs pertaining to group i

m ∈ Z+ Sample size

Table 2: Functions, spaces, and common variables in FPAC learning.

example, all finite learning models have learning capacity
limitations, be they finite neurons counts in artificial neural
networks, norm constraints on parameter vectors, or depth
bounds in decision trees, and this paucity begets disagree-
ment between groups, each of whom would prefer structures
be learned that benefit themselves. Learners must balance
between competing preferences that arise when groups have
direct disagreement, i.e., conflicting preferences for Y given
X , or indirect disagreement, i.e., agreement on Y given X ,
but disagreement as to what to prioritize, due to different
distributions over X .

It is enlightening to consider the process by which first-order
optimization trains a model. Ideally, under complete agree-
ment, each group would have the same response f(θ) in
expected or empirical sentiment to the parameters θ. In this
case, since W(i 7→ f(θ);w) = f(θ) (by axioms 6 & 7), it
holds that ∇θW(i 7→ f(θ);w) = ∇θf(θ), thus optimiza-
tion proceeds as in standard gradient ascent on expected util-
ity. However, complete agreement is unrealistic, as different
groups generally respond differently to different models.

Starting from an arbitrary parameterization θ0, it is often
possible to improve utility for all groups simultaneously by
first focusing on aspects of the learning problem relevant to
all groups (i.e., initially groups may agree on how to proceed
in a mutually beneficial manner). However, once Pareto-
dominance is achieved, we enter the realm of disagreement,
as no decision will benefit any group without harming oth-
ers. Observe now that for p < 1 welfare functions, the
power-mean derivative wiu

p−1
i

Wp−1
p (u;w)

(see lemma 3.10) de-
pends inversely on group utility ui. Therefore, infinitessi-
mal movement along the gradient favors equitable transfer
from high-utility to low-utility groups, and gradient ascent
steps discretely approximate this process.

The welfare-optimal model is thus an equilibrium between
the forces of preferentially increasing low-utility group util-
ities and those utilities rising relative to their peers. This
tension in training dynamics results in compromise between
groups, and in some sense the whole process has more in
common with adversarial learning than standard maximiza-
tion tasks; indeed for p = −∞, we have an explicit maximin
objective, albeit one with a finite inner minimization set. For
these reasons, the equilibrium model h⋆ that results from

welfare maximization generally differs greatly from any of
the models each group would select for themselves. Thus
far, we have discussed only the computational aspects of
welfare-based learning tasks, but the remainder of this work
is focused on the statistical aspect of this setting.

4.2 The Fundamentals of Estimation

Before treating the intricacies of learning (optimization)
over a class of functions H, we first treat the subject of
estimating utility values via sampling for a single function
h, and we then discuss welfare estimates via the plug-in
estimator. Namely, there exists some true expected utility
vector u .

= i 7→ E(x,y)∼Di
[(u◦h)(x, y)], and we have some

estimate û, and we ask the questions, “How well does û
approximate û?” and moreover, “How well does the plug-
in welfare estimate W(û;w) approximate the true welfare
W(u;w)?”

In estimation settings, we generally assume some consistent
estimator û of true utility u ∈ [0, r]g , i.e., some û such that
limm→∞ û = u. For our purposes, the empirical mean over
m samples per group will suffice. Here, for finite u, using
only ε-δ limit continuity (of welfare) and the weak law-of-
large-numbers, we have consistency of the plug-in welfare
estimate, i.e., limm→∞ W(û;w) = W(u;w), but in the
grand scheme of things, this is a rather weak guarantee. If
we assume finite variance, then for any norm ∥·∥W and any
failure probability δ, by the central limit theorem, we have

lim
m→∞

P̂
u

(
1√
m
∥u− û∥W ≤

√
2v ln 1

δ

)
≥ 1− δ ,

for variance proxy v
.
= Vŝ[∥ŝ∥W]. In general, given some

weighted welfare function W(·;w), we wish to bound the
estimation error |W(û;w)−W(u;w)| of the plug-in esti-
mator.

Table 3 precisely characterizes the asymptotic convergence
rates of estimation error under each continuity concept stud-
ied in this work. We find root-hyperbolic rates under Lips-
chitz continuity, and α

2 power-law rates under Hölder conti-
nuity, though in all cases, the variance proxy v (and thus the
norm ∥·∥W) also plays a substantial role.

Despite the above positive results, significant challenges
arise in estimating the welfare of even a single h. While
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Continuity Deviation Bound Asymptotic Error Sample Complexity
Concept |W(û;w)−W(u;w)|≤ Convergence Rate min{m∈Z+ |P(|W(û;w)−W(u;w)|>ε)<δ}

ε-δ Limit — limm→∞ ε = 0 mW(ε, δ) <∞

λ-α Hölder λ∥u− û∥αM ε ≲ λ
(

2v ln 1
δ

m

)α/2
mW(ε, δ) ≲

2λ
2/αv ln 1

δ

ε2/α

λ Lipschitz λ∥u− û∥M ε ≲ λ

√
2v ln 1

δ

m mW(ε, δ) ≲
2λ2v ln 1

δ

ε2

Nonexpansive ∥u− û∥M ε ≲
√

2v ln 1
δ

m mW(ε, δ) ≲
2v ln 1

δ

ε2

Table 3: Continuity concepts and asymptotic estimation guarantees. For each type of continuity studied herein, we bound
the estimation error ε = |M− M̂|, as well as the sample complexity mW(ε, δ), which is the number of samples required to
attain ε estimation error with probability at least 1− δ. Here a ≲ b denotes asymptotic inequality, which can be formalized
as limm→∞

a(m)
b(m) ≤ 1 or limε→0+

a(ε)
b(ε) ≤ 1. The asymptotic approximation stems from the central limit theorem, and

upper-bounds are due to continuity-based deviation bounds and Gaussian-Chernoff tail bounds.

the plug-in welfare estimator preserves the consistency of
the utility estimator û, no unbiased estimator for welfare
functions (unless p = 1 or stringent assumptions are made
on the distributions D1:g) essentially because W(u;w) is
a nonlinear operator. There are also deep questions as to
how to optimally allocate sampling effort, since the vari-
ances of each ûi may differ, as may the impact of each ûi

on W(û;w), both of which directly impact the variance
proxy v. These questions are probed in detail by Cousins
[2022], but in this work, we generally assume m samples
for each group, which greatly simplifies the matter, and
never requires more than a factor g more samples than any
nonuniform allocation of sampling effort.

The above analysis is straightforward, but it does not scale
well from a single h to learning over a large hypothesis class
H, and moreover the behavior of the quantity v depends
intimately on ∥·∥W and the sampling distributions D1:g.
Going forward, we shall bound the generalization error and
sample complexity of welfare estimation by first separately
bounding each group’s utility values, and then taking a
union bound over groups. This technique introduces ln g

δ
terms instead of the ln 1

δ terms of our central limit theorem
argument (see table 3), but it allows us to express our results
in terms of readily-available generalization error and sample
complexity bounds for per-group (scalar) utilities.

4.3 Fair-PAC Learning and Learnability

We first show that the estimation error of welfare W(u;w)
may be bounded in terms of the error of each utility value ui.
From there, we bound the sample complexity of optimiza-
tion, and describe a notion of fair-PAC (FPAC) learnabil-
ity for welfare functions, wherein the goal is to uniformly
bound the number of samples required to learn inH.

We abstract away the statistical details of this estimation
process by assuming, for each group i, a known bound on
the supremum deviation of the expected utility for each
h ∈ H, i.e., a bound of the form

∀i : sup
h∈H

∣∣∣∣EDi

[u ◦ h]− Ê̂
Di

[u ◦ h]
∣∣∣∣ ≤ εi . (3)

The details of obtaining such bounds with high probabil-
ity are well-studied, and Cousins [2022] discusses them
under the name additive error vector (AEV) bounds in
group-fairness settings, showing that they can be obtained
via the Chernoff method [Bennett, 1962, Hoeffding, 1963,
Boucheron et al., 2013], Rademacher averages [Bartlett and
Mendelson, 2002, Shalev-Shwartz and Ben-David, 2014,
Mitzenmacher and Upfal, 2017, Cousins and Riondato,
2020], or other such tools.

In particular, using Rademacher averages, bounds on the
supremum deviation often take the form

O

(
r ln g

δ

m
+

√
C + r2 ln g

δ

m

)
,

where C depends on Di and H, and can generally be
bounded as v lnn, where v

.
= suph∈H VD[s ◦ h] is the

supremum variance of utility over the classH, and n mea-
sures the effective size of the hypothesis class. The details
are beyond the scope of this work, but n = |H| suffices.4

Observe that here v plays the same fundamental role as in
single-function estimation (as discussed in section 4.2), n
essentially corrects for the multiple comparisons problem
(i.e., our bound holds across all ofH simultaneously) with
similar form to union bounds, and the O

r ln 1
δ

m term acts as
an (asymptotically negligible) finite-sample correction to
a tail bound that otherwise resembles a Gaussian-Chernoff
bound.

With the table set, we now bound the estimation error of
welfare objectives. The following result holds essentially
by the definition of Hölder continuity, and can immediately
be applied to any model class H for which bounds on the
supremum deviation are available.

4Furthermore, taking n to bound the cardinality of project-
ing u ◦ H onto mi samples also suffices (via, e.g., the Vapnik-
Chervonenkis dimension), and more sophisticated metrics of ef-
fective size, such as covering numbers, i.e., the smallest cover size
n such that there exists some H′ ⊆ X → Y such that |H′| = n
and each h ∈ H can be well-approximated by some h′ ∈ H′.
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Theorem 4.1 (Hölder Continuity and Welfare Optimal-
ity). Suppose W(·;w) is λ-α-∥·∥W Hölder continuous w.r.t.
some norm ∥·∥W, and additive error bounds ε that obey (3).
Then

sup
h∈H

∣∣∣∣W(i 7→ E
Di

[u ◦ h];w
)
−W

(
i 7→ Ê̂

Di

[u ◦ h];w
)∣∣∣∣≤λ∥ε∥αW.

Consequently, the empirical welfare maximizer

ĥ
.
= sup

h∈H
W

(
i 7→ Ê̂

Di

[u ◦ h];w
)

approximates the true welfare maximizer

h⋆ .
= sup

h⋆∈H
W

(
i 7→ E

Di

[u ◦ h⋆];w

)
,

in terms of welfare-optimality, as it holds that

W

(
i 7→ E

Di

[u ◦ ĥ];w
)
≥W

(
i 7→ E

Di

[u ◦ h⋆];w

)
− 2λ∥ε∥αW .

This result is easily interpreted and practically relevant.
Furthermore, it is readily applied to any power-mean wel-
fare function via lemmata 3.12 & 3.13, whereas prior work
[Cousins, 2021, 2022] only handles the case of Lipschitz-
continuous aggregator functions.

In PAC-learning theory, it is standard to analyze the diffi-
culty of learning as a function of the complexity of the model
classH. To this end, we assumeH is parameterized by D
variables d ∈ RD

0+, e.g., the dimension of a linear classifier
[Shalev-Shwartz and Ben-David, 2014], or for neural net-
work families, a vector of per-layer widths [Anthony and
Bartlett, 2009] or per-layer norm constraints [Bartlett et al.,
2017], whereHd denotes the class parameterized by d.

Furthermore, we seek to know how much data we need to
probabilistically learn an objective to within a given error
tolerance ε, rather than how well we can learn a concept
with a given sample size. Henceforth, a sample complexity
function mH(ε, δ, r,d) is some function such that, for util-
ity range r, any probability distribution D, a sample size
of at least mH(ε, δ, r,d) ensures that u ◦ H is uniformly
convergent, i.e., with probability at least 1− δ, it holds that

sup
h∈Hd

∣∣∣E
D
[u ◦ h]− Ê̂

D
[u ◦ h]

∣∣∣ ≤ ε . (4)

Similarly, we express the (per-group) sample complex-
ity of uniformly estimating a welfare function W(·;w) as
mW,H(ε, δ, g, r,d), requiring with probability at least 1−δ,
it holds that

sup
h∈Hd

∣∣∣∣W(i 7→ E
Di

[u ◦ h];w
)
−W

(
i 7→ Ê̂

Di

[u ◦ h];w
)∣∣∣∣≤ε . (5)

We now analyze the sample complexity of welfare estima-
tion, and subsequently FPAC learning with welfare objec-
tives.

Theorem 4.2 (Welfare Sample Complexity). Suppose sam-
ple complexity function mH(ε, δ, r,d) for hypothesis class
H, and some welfare function W(·;w) that is λ-α-∥·∥∞
Hölder continuous. Then the sample complexity function

mW,H(ε, δ, g, r,d) ≤ mH

(
α
√

ε
λ ,

δ
g , r,d

)

is sufficient, i.e., for at least this many samples from each of
the g groups, (5) holds. Moreover, for this sample size, with
probability at least 1− δ, the empirical welfare maximizer
is 2ε-optimal.

From these uniform generalization error and sample com-
plexity bounds, we can show that classes of welfare func-
tions are FPAC learnable, defined as follows.

Definition 4.3 (Fair-PAC Learning). Suppose hypothesis
classH⊆X→Y ′ parameterized by d∈RD

0+, utility function
u : Y ′×Y→R0+, and welfare classW⊆Rg

0+→R0+. We
sayH is fair-PAC-learnable w.r.t. u andW if there exists an
algorithm A and sample complexity function mW,H such
that for all
1) class parameterizations d;
2) group counts g;
3) per-group instance distributionsD1:g , each over (X ×Y);
4) (weighted) welfare concepts W(·;w) inW;
5) additive approximation errors ε > 0; &
6) failure probabilities δ ∈ (0, 1);
it holds that A can identify a hypothesis ĥ ∈ Hd, i.e.,
ĥ← A(D1:g,W, ε, δ,d), such that
1) for each group, A(D1:g,W, ε, δ,d) draws no more than
mW,H(ε, δ,W, g,d) samples; &
2) with probability at least 1− δ (over randomness ofA and
sampling), ĥ obeys

W

(
i 7→ E

Di

[u ◦ ĥ];w
)
≥ sup
h⋆∈Hd

W

(
i 7→ E

Di

[u ◦ h⋆];w

)
−ε .

Furthermore, if mW,H(ε, δ,W, g,d) can be uniformly
bounded for any W(·;w) ∈ W , then we say that H is
uniformly PAC learnable overW w.r.t. u.

With trivial changes to convert the maximization objective to
a minimization objective, this definition can also be applied
to loss functions and classes of malfare functions. In par-
ticular, this definition generalizes the FPAC concept given
by Cousins [2021], which was specified for the class of all
malfare functions satisfying a set of axioms corresponding
to p≥1 weighted power-means. We also relax the definition
to allow the sample complexity function to depend on the
(weighted) welfare function W(·;w) ∈ W , but our concept
of uniform FPAC-learnability strictly generalizes that of
Cousins [2021].

Theorem 4.4 (Characterizing FPAC Learnability). Suppose
some weighted power-mean welfare function Wp(·;w),
utility function u with range r, and hypothesis class
H with sample complexity function mH(ε, δ, r,d) ∈
Poly( 1ε , log

1
δ , r,d). We then bound the sample complex-

ity m
.
= mW,H(ε, δ,W, g,d) of FPAC learning H w.r.t.

welfare classW .
= {W(·;w)} as

1) m≤mH
(
α
√

ε
2λ
, δ

g , r,d
)
∈Poly

(
α√
λ, 1

α
√
ε
, log 1

δ , log g, r,d
)
;

2) p ∈ (0, 1]⇒m ∈ Poly
(

p
√
r, 1

p
√
p ,

1
p
√
ε
, log 1

δ , log g,d
)
;

3) p = 0⇒m ∈ Poly
(

wmin
√
r, 1

wmin
√
ε
, log 1

δ , log g,d
)
;
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4) p < 0⇒m ∈ Poly
(
1
ε ,

1
|p|√wmin

, log 1
δ , log g, r,d

)
; &

5) for any c ∈ (0, 1), if |p| ≥ c and group weights
obey the nonnegligibility condition wmin ≥ c

g , then m ∈
Poly

1
c
(
1
c ,

1
ε , g, log

1
δ , r,d

)
.

Observe that the subfamilies of power-mean welfare func-
tions considered in items 2–4 are induced by specific ax-
iomatic choices. In particular, item 2 follows from SM0
(axiom 12), item 3 follows from either IIA or from 0B
(axiom 15) and SM0, and item 4 follows from either Lip-
schitz continuity and SWTP (axiom 13; to prevent p = 1)
or from FC (axiom 16) — see figure 3 for visual explica-
tion. Similarly, item 5 follows by assuming nonnegligibility
of weights, which holds, e.g., for unweighted aggregator
functions, and bounding p away from 0, which may be ac-
complished in a variety of ways. We thus conclude that
the axiomatic choices made to restrict the space of welfare
functions directly impact their FPAC-learnability.

On Uniform and Polynomial FPAC-Learnability The
bounds of theorem 4.4 items 1–4 imply FPAC learnability,
but not uniform FPAC learnability, and exponential depen-
dencies on α, 1

wmin
, or 1

|p| do appear. It is only in item 5, for
any constant c, that the class is uniformly-FPAC-learnable.
In contrast, using only Lipschitz continuity, it is straight-
forward to show that the entire class of all fair malfare
functions, i.e., any

W
p(·;w) for p ≥ 1, for which α = 1 by

lemma 3.12 item 1, is uniformly FPAC learnable.

In general, if α is bounded away from 0, and mH(ε, δ, r,d)
is polynomial, then the uniform sample complexity of FPAC
learning is also polynomial in all parameters, and thus
FPAC learning in some sense preserves polynomial learn-
ability.We thus conclude that FPAC learning with malfare
concepts is easier than FPAC learning with welfare con-
cepts, however under appropriate axiomatically-motivated
conditions, the gap in sample complexity between the two
settings is polynomial.

4.4 Sample-Efficient Learning and Estimation with
Progressive Sampling

Our study of FPAC learnability is based on the Lipschitz
and Hölder continuity of power means, which only coarsely
describe their behavior, yielding worst-case sample com-
plexity bounds. Such bounds may be improved if a priori
knowledge regarding relative (dis)utility values is available;
for example, under near-equality, power-mean functions
behave roughly linearly, and may thus be much easier to
estimate or optimize. We now briefly voyage into the world
of progressive sampling to show that, even without such a
priori knowledge, efficient learning algorithms can adapt
their sample consumption to the inherent difficulty of the
specific task at hand, which may be substantially less than
the worst-case sample complexity bounds of theorem 4.4
would suggest.

Without considering the delicate intricacies of probabilis-
tic reasoning, one might naı̈vely assume they could itera-
tively draw one sample per group, and terminate when the
welfare objective is uniformly estimated or approximately
optimized. Unfortunately, this quickly runs into statisti-
cal errors via the multiple comparisons problem, as the
sampling process is inherently probabilistic. Efficient pro-
gressive sampling methods take this basic idea and account
for these issues, but rather than incrementing the sample
size at each step, they instead increase the sample size geo-
metrically. Such methods have had great impact in myriad
settings, including statistical data science [Riondato and
Upfal, 2015, 2018, Cousins et al., 2020, 2023d], where
estimators query a single distribution, empirical game the-
oretic analysis [Viqueira et al., 2020, 2021, Cousins et al.,
2022b, Mishra et al., 2022, Cousins et al., 2023a], where
estimators query a noisy utility oracle at strategy profiles
to bound various game-theoretic properties, and fair ma-
chine learning [Cousins, 2022], wherein fair objectives on
model classes are estimated and optimized by sampling
from group-specific distributions.

At a glance, assume our sample complexity bounds scale
as Θ(log 1

δ ). Consequently, a schedule of length T with
uniformly allocated δ (i.e., one that considers up to T sam-
ple sizes, and takes probability 1− δ

T tail bounds at each)
can overshoot the sufficient sample size by a constant factor
(due to geometric spacing), and furthermore would need a
factor O(log T ) excess samples to correct for the multiple
comparisons problem. However, aside from these factors,
it is otherwise as sharp as knowing the (task-specific) min-
imum sufficient sample size a priori. Therefore, in cases
where Hölder analysis only loosely bounds sample com-
plexity, progressive sampling methods can still adaptively
consume about as many samples as are actually required for
the task at hand.

The question remains, “How long must the sampling sched-
ule be?” In other words, “How large must T be to guaran-
tee a sufficient sample size is reached?” Here our sample
complexity bounds prove invaluable: a geometric sampling
schedule must have length logarithmic in the ratio of max-
imum to minimum sufficient sample sizes, both of which
are Θ(log Tg

δ ), thus solving for a minimal sufficient T is
straightforward, e.g., with Hoeffding’s inequality, a dou-
bling schedule admits

T =

⌈
log2

⌈ 12 (
2rλ
ε )

2
α ln 2|H|Tg

δ ⌉
⌈ 12 ln

2|H|Tg
δ ⌉

⌉
∈Θ

(
1
α log rλ

ε

)
via theorem 4.4 item 1. In general, this progressive sampling
strategy induces an overhead cost factor of

O log log T ⊆O log log
mW,H

(
α
√

ε
λ ,

δ
T , g, r,d

)
log Tg

δ

⊂ log Poly
(

1
|p| ,

1
wmin

, log Poly
(
1
ε , g, r,d

))
(6)

relative to the (unknown) task-specific sufficient sample size.
Note that in (6), even terms exponential in 1

|p| and 1
wmin

in



Cyrus Cousins

the FPAC sample complexity bound become logarithmic,
due to the double-logarithm. Thus while welfare functions
may be inherently difficult to estimate, the statistical over-
head of progressive sampling, as compared to drawing a
task-specific sufficient sample, is quite negligible.

5 Experiments

To demonstrate practical relevance, we present a synthetic
experiment in a welfare maximization 1-armed bandit set-
ting, and study the sample complexity and sensitivity of
welfare estimates to various parameters. In particular, we
assume each pull of the bandit arm gives a single utility sam-
ple for each group, and from empirical mean utilities û, we
wish to estimate the welfare W(u;w) as W(û;w). Note
that this is a key step towards regret-optimally selecting
among k arms.

We assume groups {g1, g2}, where g1 is the majority group
and g2 is the minority group, and the weight and/or expected
utility of g1 is no less than that of g2. In this experiment,
utility samples are UNIFORM(ui− 1

2 ,ui+
1
2 ) i.i.d. random

variables (mean ui) for each group i. Figure 4 varies the
key parameters of welfare p, minority mean u2, minority
weight w2, and sample size m, in order to study welfare
estimation around the particularly challenging p ≈ 0 and
wmin ≈ 0 domains. Here empirical utilities ûi have vari-
ance 1

12m , but similar results are shown for Bernoulli and
beta noise models with more complicated variance structure
in appendix B. We present the true welfare and approximate
Gaussian ±1σ (68.27%) confidence intervals on empirical
welfare, i.e., Wp(u;w)±λ( 1

12m)
α
2 , where λ, α are as in lem-

mata 3.12 & 3.13. Using 5000 trials over sampled utilities,
we also plot average empirical welfare, and a 68.27% empir-
ical confidence band on empirical welfare, i.e., Wp(û;w).

Note that our theoretical Gaussian confidence intervals
should ideally contain at least 68.27% of the empirical
welfare samples (i.e., the empirical band), and indeed this is
the case, despite the error due to sampling and the Gaussian
approximation. We don’t necessarily expect the empiri-
cal 68.27% confidence intervals to contain the true wel-
fare, although this does always occur in these experiments.
Moreover, empirical confidence bands may be substantially
smaller than Gaussian confidence bands, as they are esti-
mated via sampling, and thus not susceptible to the loose-
ness of Lipschitz and Hölder continuity bounds. We see
exactly this, and the gap between the empirical and theoreti-
cal confidence bounds varies with the parameters.

Figure 4a shows the impact of changing p on the welfare.
Observe that Wp(·;w) is monotonic in p, and it is thus no
surprise that all measures of welfare are increasing in p. The
interesting portion of the experiment is that both the 68.27%
approximate Gaussian and empirical confidence intervals
are very wide for p ≈ 0, and narrow as |p| increases. This
concords with the theory of section 3.4, as despite the small

variances of per-group utility estimates, Wp(·;w) for p ≈ 0
remains difficult to estimate, due to high sensitivity to near-
0 utility values. Observe that the Hölder and Lipschitz
analyzes are not sharp, particularly around p = 0, because
u2 > 0, and indeed the approximate Gaussian confidence
bands contain the empirical percentiles.5 Figure 4b then
varies the minority utility u2, and we find that as u2 → 0,
empirical confidence intervals sharply diverge, due to high
sensitivity to minimum utility, i.e., û2 ≈ 0. In figure 4c, we
vary the weight of the minority group w2, and find extremely
wide confidence intervals as w2 → 0, since W0(û;w) is
very sensitive to û2 ≈ 0 when w2 ≈ 0, but as w2 → 1

2 , the
estimate of welfare becomes much more stable, as higher
w2 means smaller overall welfare, but less sensitivity to û2.

Figures 4a–4c all show the pathologically large estima-
tion error of welfare functions, which when left unchecked
causes models to overfit to disadvantaged groups, then ex-
hibit bias against them when applied ex vitro. In figure 4d,
we study a mitigation to this problem, by observing the
impact of sample size m on W0(û;w). Note that by the-
orem 4.2 the sample complexity of W0(·;w) estimation
is O( 1ε )

2
w2 , whereas for W1(·;w) it is only O(w2

ε )2, and
this asymptotically larger sample complexity is visually
manifest as slower convergence rates for both the Gaussian
and empirical confidence intervals. In all cases, we con-
clude that, as the theory suggests, an understanding of the
continuity properties of power-mean functions is crucial to
understanding the sample complexity and estimation error
of practical welfare objectives.

6 Conclusion

We show an alternative axiomatic basis for fair aggregator
functions, which we argue is simpler, weaker, and more
fundamental than prior art. We also draw interdisciplinary
connections to moral philosophy and econometric theory to
establish stronger axioms, which intuitively guide modellers
on fair objective selection, and theoretically distinguish be-
tween natural classes of welfare functions. In particular,
our (strict) weak transfer principle, zero barrier, and finite
ceiling axioms strengthen arguments for prioritarian (i.e.,
more egalitarian than utilitarian) fairness concepts by assum-
ing less and/or concluding more, and our axioms handling
group weights w simplify existing theory.

We then perform a detailed analysis of the Lipschitz and
Hölder continuity of classes of power-mean welfare func-
tions that satisfy our axioms. In particular, we find that our
extended axioms naturally partition the class of power-mean
functions into classes, each of which share Lipschitz or
Hölder continuity properties, which is visually depicted in

5Still, the Lipschitz continuity bounds used for sufficiently
negative p < 0 closely follow the Lipschitz constants plotted in
figure 2. Thus while Lipschitz continuity describes the behavior of
power means reasonably well here, our Hölder continuity analysis
is needed to understand behavior about p ≈ 0 and for p > 0.
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Figure 4: Estimating the Welfare of a 1-Armed Bandit with Uniform Noise. Each plot studies the response of welfare to one
parameter, and the remaining parameters are selected from p = 0, u = ⟨0.999, 0.001⟩, w = ⟨ 23 ,

1
3 ⟩, and m = 100. All axes

are linear, except 4a, which plots p ∈ [−∞, 1] by transforming x = 1
π arctan(1− p), and 4d, which is logarithmic in x.

figure 3. We also argue that Lipschitz continuity itself may
be viewed as a form of stability axiom, with consequent
resistance to minority rule. We follow with a discussion
of applications in privacy, algorithmic stability, adversarial
robustness, and strategy proofness, finding that Lipschitz
and/or Hölder continuity of welfare are often sufficient to
show these properties, and we later experimentally study
the relationship between choice of axioms, welfare function,
data distributions, and the difficulty of estimation.

Finally, we generalize the concept of fair-PAC learning to
arbitrary families of welfare functions. We then show con-
ditions under which fair-PAC learning welfare objectives
has polynomial sample complexity, and is nearly as effi-
cient as fair-PAC learning malfare objectives, improving the
state of the art in utility-based and econometric learning
settings. Moreover, prior work handles only the continuity
and sample-complexity analysis of the p ≥ 1 case (malfare),
and we show that while the p < 1 case is more challeng-
ing, the difficulty of learning actually increases smoothly
as p→ 0 from both directions, yielding intuitive, mathe-
matically rigorous, and practically actionable understanding
of learning and estimation problems over the entire power-
mean spectrum. Furthermore, specific axiomatic choices
regarding the class of welfare functions specify discrete
classes with interpretable properties and desirable fair-PAC
learning guarantees, thus establishing a hierarchy of fair
learning settings.

We hope also that these results will be generalized to related
settings. For instance, similar analysis is clearly beneficial
in regret minimization (over groups), also termed “multi-
group agnostic PAC learning” [Blum and Lykouris, 2020,
Rothblum and Yona, 2021, Cousins, 2022], wherein the
task is to minimize malfare of differences between utility or
risk of each group’s preferred model and some compromise
model. We envision similar applications in improvement
maximization, wherein we seek to maximize the welfare of
differences between utility or risk of the learned compromise
model and some fixed reference model, which addresses
issues raised by Thomas et al. [2019], Estornell et al. [2023]
as to how fair intervention models may be perceived as
unfair by groups that preferred the reference model over the
fair intervention.
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Appendices
We derive every result stated in the main body in appendix A, and provide supplementary experiments in appendix B.

A Proof Compendium

We now derive all lemmas, theorems, corollaries, and other results stated in the paper body. This appendix is broken into
two subappendices, the first (appendix A.1) shows the properties and relationships between the various axioms of section 3,
and the second (appendix A.2) shows all results in section 4 related to sample complexity and FPAC learning.

A.1 Properties of Axiomatic Aggregator Functions

Before delving into the proofs of all results given in the paper body, we first state a standard result that shows the power-mean
Mp(u;w) is monotonically increasing in p, usually referred to as the power-mean inequality.

Lemma A.1 (Power-Mean Inequality). Suppose −∞ ≤ p ≤ q ≤ ∞. Then for any u ∈ Rg
0+,w ∈ △g , it holds

Mp(u;w) ≤ Mq(u;w) .

We now show lemma 3.2.

Lemma 3.2 (Equivalence of Weighted Axioms). Consider some aggregator function M(·;w). It always holds that WS
(axiom 2) ∧WD (axiom 3)⇔WA (axiom 9).

Proof. Recall the axioms in question:

Weighted Symmetry (WS): For all permutations π over G, it holds that M(u;w) = M
(
π(u);π(w)

)
.

Weighted Decomposability (WD): Suppose α ∈ (0, 1). Then M(u;w) = M
(
⟨u1,u1,u2, . . . ⟩; ⟨αw1, (1−α)w1,w2, . . . ⟩

)
.

Weighted Additivity (WA): Suppose g′ ∈ Z+ ∪ {∞}, u′ ∈ Rg′

0+, and weights vector w′ ∈ △g′ such that for all u ∈ R0+, it
holds that

∑
i∈G wi1u(ui) =

∑
i∈G′ w′

i1u(u
′
i). Then M(u;w) = M(u′;w′).

We first show the reverse direction, i.e., WS (axiom 2) ∧WD (axiom 3)⇐WA (axiom 9). Note that the WD holds by
definition, as the two weight terms αw1 and (1− α)w1 that share sentiment u1 in WD are combined within the summation
of WA. Now, observe that WS holds by commutativity of summation over countable sets, thus the LHS and RHS summations
in the WA definitions both remain invariant under arbitrary permutation.

We now show the forward direction, i.e., WS (axiom 2) ∧WD (axiom 3) =⇒ WA (axiom 9). This result is less direct, but
observe that together, (WS) and (WD) can be used to consolidate the weights of all ui,uj s.t. ui = uj . In particular for
each unique ui, we can produce some unique minimal reduction u⋆ and w⋆ over population G⋆ such that
(1) u⋆

1 < u⋆
2 < u⋆

3 < . . . ;
(2) for all group indices i ∈ G⋆, there exists some j ∈ G such that u⋆

i = uj ; &
(3) for all group indices i ∈ G⋆, it holds w⋆

k =
∑

j∈G wj1u(uj) for some u ∈ R0+.
Now, observe that exactly the same u⋆ and w⋆ are produced by repeating this process for u′ and w′ over population G′,
thus we may conclude that for all u ∈ R0+, it holds that

UNIQUE MINIMAL REDUCTION for u, w︷ ︸︸ ︷∑
i∈G

wi1u(ui) =
∑
i∈G⋆

w⋆

i1u(u
⋆

i ) =
∑
i∈G′

w′
i1u(u

′
i)︸ ︷︷ ︸

UNIQUE MINIMAL REDUCTION for u′, w′

.

We may thus conclude WA.

We now show lemma 3.3.

Lemma 3.3 (Transfer Principle Equivalencies). Consider some aggregator function M(·;w). The following relate properties
(axioms) that M(·;w) obeys.
1) PDTP (11) =⇒ WTP (8); &
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2) Suppose axioms 1–7. Then WTP (8) =⇒ PDTP (11).

Proof. We first show item 1. Observe that the PDTP (11) =⇒ WTP (8) follows directly, as the PDTP requires that a broad
class of equitable (dis)utility transfers are favorable, whereas the WTP requires only that there exist some (dis)utility transfer
between two particular groups that is favorable.

The conditional reverse implication of item 2 is a bit more subtle. Suppose axioms 1–7. Then, by theorem 3.5 item 1,6 we
may conclude M(u;w) = Mp(u;w) for some p ∈ R. Now, suppose for the sake of argument (shown below) that axiom 8
does not hold for welfare functions with p > 1, or for malfare functions with p < 1. We may thus conclude p ≤ 1 in the
welfare case, and p ≥ 1 in the malfare case, in either case for which axiom 11 is known to hold, which completes the result.

The remaining step is to show that axiom 8 does not hold if p > 1 for welfare functions, or p < 1 for malfare functions.
First, observe that for p ̸= 0, the monotonic transformation pMp

p(u;w) = p
∑g

i=1 wiu
p
i of Mp(u;w) is convex for p > 1,

and concave for 0 ̸= p < 1. Now, for any u ∈ Rg
0+, let i .

= argmini ui and j
.
= argmaxj uj , and suppose some ε > 0

s.t. ui + wjε < uj − wiε. Any “equitable transfer” of the form W(u + εwj1i − εwi1j ;w) obeys W(u + εwj1i −
εwi1j ;w) > W(u;w) for welfare if p > 1. Similarly, an “equitable transfer” of the form

W

(u + εwj1i − εwi1j ;w)
obeys

W

(u+ εwj1i− εwi1j ;w) <

W

(u;w) for malfare if p < 1. Both cases are apparent from the monotonic transform,
as the wi

wi
and wj

wj
weighting terms cancel, leaving only transfers along the curvature of the (·)p power function. In either

case, the WTP is violated, thus we may conclude p ≤ 1 for welfare functions, and p ≥ 1 for malfare functions. Finally, note
that similar logic applies for the case of p = 0, instead using a logarithmic monotonic transform.

We now show theorem 3.5.

Theorem 3.5 (Aggregator Function Properties). Suppose aggregator function M(u;w), and assume arbitrary sentiment
vector u ∈ Rg

0+ and weights vector w ∈ △g . The following then hold.
1) Power-Mean Factorization: Axioms 1–7 imply there exists some p ∈ R such that M(u;w) = Mp(u;w).
2) Fair Welfare and Malfare: Axioms 1–8 imply p ∈ (−∞, 1] for welfare and p ∈ [1,∞) for malfare.

Proof. The key to showing this result is to note that, as mentioned in the text, theorem 2.4 of Cousins [2021] draws the same
conclusion, but under different assumptions. The proof strategy is thus to show that our seemingly weaker assumptions
actually imply (in fact, are equivalent to) the assumptions of the aforementioned result. In particular, for item 1, it suffices to
conclude axioms 1, 4–7 & 9, and for item 2, we need only additionally conclude axiom 11.

We now show item 1. Observe that we assume axioms 1–7 directly, leaving only axiom 9 (WA), which by lemma 3.2, is
implied by axioms 2 & 3. This concludes item 1.

We now show item 2. Observe that after assuming our axioms, we need only show axiom 11 (PDTP), which by
lemma 3.3 item 2, is implied by the assumed axioms 1–7, in conjunction with axiom 8, which is also assumed. This
concludes item 2.

We now show lemma 3.7.

Lemma 3.7 (Consequences of Strong Axioms). Suppose power-mean aggregator function Mp(·;w). The following then
hold:
1) Strengthening the SM axiom (i.e., 1→ 12) implies p > 0.
2) Strengthening the WTP axiom (i.e., 8→ 13) implies p ̸= 1, thus p < 1 for welfare and p > 1 for malfare.
3) Strict PDTP (i.e., 11→ 14) implies p ̸= 1 and p ̸= ±∞, thus p ∈ (−∞, 1) for welfare and p ∈ (1,∞) for malfare.

Proof. We first show item 1. First note that the desideratum follows directly from the following claim: “If u ̸= 0 and
mini∈G ui = 0, then (Mp(u;w) = 0)⇔ (p ≤ 0).” In particular, here M(u;w) = M(0;w) = 0 for u ̸= 0 would violate
axiom 12, thus by contraposition, axiom 12 implies p > 0. We thus need only show this claim, which follows via analysis of
the power mean.

It is straightforward to see that since u ̸= 0, it holds p > 0 =⇒ Mp(u;w) > 0, thus by the contrapositive, Mp(u;w) =
0 =⇒ p ≤ 0. To see the converse, first observe that since mini ui = 0, it holds p = 0 =⇒ Mp(u;w) = 0. The case of

6Note that theorem 3.5 makes use of this result to show item 2, but we use only theorem 3.5 item 1 here, thus there is no cyclic
dependency.
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p < 0 appears to be a bit more subtle, however observe that the power mean is monotonically increasing in p, and thus in
this case, we observe the sandwich inequality

0 = M−∞(u;w) ≤ Mp(u;w) ≤ M0(u;w) = 0 .

It thus holds that, for u ̸= 0, p ≤ 0 =⇒ Mp(u;w) = 0. Both directions of the bijection of the claim have now been
shown, thus item 1 is complete.

We now show item 2. From theorem 3.5 item 2, we already have p ≤ 1 for welfare and p ≥ 1 for malfare, so in both
cases, all we need do is show p ̸= 1, which we now show via the contrapositive. Now observe that for all ε, it holds that
M1(u + 1iwjε;w) = M1(u − 1jwiε;w), hence for no choice of ε does the transfer result in a strict improvement to
welfare or malfare. We thus conclude p = 1 =⇒ ¬(axiom 13), hence (axiom 13) =⇒ p ̸= 1, which concludes item 2.

We now show item 3. Similar logic to item 2 precludes the case of p = 1 (indeed, observe that this must be so, as SPDTP
implies PDTP, by similar reasoning to that found in the proof of lemma 3.3 item 1), this portion of item 3 is a direct
corollary of item 2. Now, observe that the egalitarian cases p ∈ ±∞ are also inadmissible, essentially because they are
only sensitive to the extreme values of u and thus transfer between any two non-extreme ui,uj , i.e., transfer between i, j
s.t. infk uk < ui < uj < supk uk, has no impact on the egalitarian power means. We thus conclude that under axiom 14
(SPDTP), it holds that p ̸= ±∞.

We now show lemma 3.9.

Lemma 3.9 (Consequences of Extreme Axioms). Suppose as in lemma 3.7. The following then hold.
1) 0B (axiom 15)⇔ p ≤ 0. 2) FC (axiom 16)⇔ p < 0.

Proof. We first show item 1. We first show that 0B (axiom 15) =⇒ p ≤ 0. This is clear by contrapositive, as for any
p > 0, it holds Mp(⟨0, 1⟩; ⟨ 12 ,

1
2 ⟩) =

1
21/p

> 0, thus 0B does not hold.

We now show the converse, i.e., p ≤ 0 =⇒ 0B (axiom 15). In particular, we seek to show that limui→0+ M0(u;w) = 0.
We first address the case of p < 0. Observe that

lim
ui→0+

Mp(u;w) = lim
ui→0+

lim
ε→0+

(
1∑g

i=1
wi

(ui+ε)−p

)− 1
p

DEFINITION 3.4 (POWER MEAN)

=

 1

lim
ui→0+

lim
ε→0+

∑g
i=1

wi

(ui+ε)−p

− 1
p

LIMIT LAWS

=

(
1

∞

)− 1
p

= 0 . LIMIT LAWS

We now address the case of p = 0; in particular, observe that

lim
ui→0+

M0(u;w) = lim
ui→0+

lim
ρ→0

lim
ε→0+

Mρ(u+ ε1;w) DEFINITION 3.4 (POWER MEAN)

= lim
ui→0+

lim
ε→0+

g∏
i=1

(ui + ε)
wi GEOMETRIC MEAN LIMIT

= lim
ui→0+

lim
ε→0+

exp

(
g∑

i=1

wi ln (ui + ε)

)
LOGARITHMIC IDENTITIES

= exp

(
lim

ui→0+
lim

ε→0+

g∑
i=1

wi ln (ui + ε)

)
LIMIT LAWS

= exp(−∞) = 0 . LIMIT LAWS

We thus have that, for any p ≤ 0, it holds limui→0+ M0(u;w) = 0. This completes the converse statement, and thus
concludes item 1.
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We now show item 2. To see this result, first observe that for any u ≻ 0, say, u .
= 1, it holds that limc→∞Mp(u +

c1i;w) = ∞ if and only if p ≥ 0. In particular, this can be seen by observing that, for the forward direction, that
p < 0 =⇒ Mp(u;w) ≤ p

√
wjuj ≤ ∞ for any j ∈ G, thus p ≥ 0, and for the reverse direction,

M0(u+ c1i;w) = lim
c→∞

(1 + c)wi =∞ ,

and then that M0(u;w) ≤ Mp(u;w) for any p ≥ 0, i.e., lemma A.1. Note that the same would hold for all u if we assumed
p > 0, but not for u s.t. uj = 0 for some j ̸= i if p = 0, however, we only need the existence of a single u for which the
statement holds.

From here, logically, we have that(
∃u ∈ Rg

0+ s.t. lim
c→∞

Mp(u+ c1i;w) =∞
)
⇔ (p ≥ 0) .

Now, observe that, by contraposition of the bijection, it holds that

(p < 0)⇔
(
∀u ∈ Rg

0+ : lim
c→∞

Mp(u+ c1i;w) <∞
)

︸ ︷︷ ︸
FC AXIOM

,

and observe that the RHS is, by definition, the FC axiom.

We now show lemma 3.10.

Lemma 3.10 (Power-Mean Differentiation). Suppose u\i ≻ 0, some weights vector w ∈ △g , and p ∈ R. The power mean
then differentiates in ui as follows.
1) If ui > 0, then ∂

∂ui
Mp(u;w) =

wiu
p−1
i

Mp−1
p (u;w)

.

2) If p < 0, then lim
ui→0+

∂
∂ui

Mp(u;w) = −p
√

1
wi
.

3) If p ∈ [0, 1), then lim
ui→0+

∂
∂ui

Mp(u;w) =∞.

Proof. Observe first that item 1 is an elementary application of the chain, power, and summation rules; the only subtlety to
this result arises in the remaining cases.

We now show item 2. This case is difficult, as naı̈ve application of item 1 results in an indeterminate 0
0 form. An experienced

practitioner of the calculus of infinitesimals may expect results via L’Hôpital’s rule, however in this case, said approach is
unwieldy, and a simple limit calculus argument yields the desideratum much more concisely. Observe now that the result
follows as

lim
ui→0+

∂

∂ui
Mp(u;w) = lim

ui→0+

wiu
p−1
i

Mp−1
p (u;w)

ITEM 1

= lim
ui→0+

wiM
1−p
p

(
j 7→ uj

ui
;w

)
MULTIPLICATIVE LINEARITY

= wi

 g∑
j=1

wj lim
ui→0+

(
uj

ui

)p


1−p
p

LIMIT LAWS

= wi

wi1
p +

g∑
j=1,j ̸=i

wj0
p


1−p
p

LIMIT LAWS

= w
1+ 1−p

p

i = w
1
p

i = −p

√
1

wi
. ALGEBRA

We now show item 3. We split this case into two subcases; namely the p = 0 and p > 0 subcases, essentially because
whether Mp(u;w) = 0 in the limit is of material significance to the proof technique.
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We begin with the p ∈ (0, 1) case. This case is simpler than the case of p = 0, as here Mp(u;w) ̸= 0 in the limit, thus the
difficulty of resolving the 0

0 indeterminate form in the limit vanishes entirely. In fact, in this case we have a finite nonzero
denominator, and an infinite numerator. In particular, we may observe the result as

lim
ui→0+

∂

∂ui
Mp(u;w) = lim

ui→0+

wiu
p−1
i

Mp−1
p (u;w)

ITEM 1

= wi
limui→0+ up−1

i

limui→0+ Mp−1
p (u;w)

LIMIT LAWS

= wiM
1−p
p (u;w)︸ ︷︷ ︸

POSITIVE FINITE

(
lim

ui→0+

1

ui

)1−p

=∞ . ALGEBRA

We now show the case of p = 0. Direct proof is more subtle than for p ∈ (0, 1), but can be derived via reasoning akin to that
of item 2. However, it is much easier to observe that the power mean exhibits continuity in p, and therefore taking limp→0

via either the p < 0 or p ∈ (0, 1) case yields the desideratum.

We now show lemma 3.12.

Lemma 3.12 (Power-Mean Lipschitz Continuity). Suppose p ∈ R, sentiment vectors u,u′ ∈ Rg
0+, and weights vector

w ∈ △g . The following then hold.
1) Suppose p ≥ 1. Then Mp(·;w) is p

√
wmax-∥·∥1, 1-Mp(|·|;w), and 1-∥·∥∞ Lipschitz.

2) Suppose p < 0. Then Mp(·;w) is 1
|p|√wmin

-∥·∥∞ Lipschitz.

Proof. Items 1 & 2 follow directly from lemma 3.10, and consideration of the curvature and monotonicity of these
functions. Briefly put, observe that malfare functions (i.e., p ≥ 1 weighted power-means) exhibit monotonically-increasing
convexity, thus derivatives increase as ui → ∞, whereas welfare functions (i.e., p ≤ 1 weighted power-means) exhibit
monotonically-increasing concavity, thus derivatives increase as ui → 0+. We now show each result in detail.

We first show item 1. We begin with the p
√
wmax-∥·∥1 Lipschitz property. Observe that for any group index i ∈ G, and any

sentiment value ui > 0, it holds that

∂

∂ui
Mp(u;w) =

wiu
p−1
i

Mp−1
p (u;w)

≤ lim
ui→∞

wiu
p−1
i

Mp−1
p (u;w)

=
wi

w
p−1
p

i

= w
1− p−1

p

i = p
√
wi .

From here, maximizing over group indices yields the p
√
wmax-∥·∥1 Lipschitz characterization.

We now show the 1-Mp(|·|;w) Lipschitz property. Observe that |Mp(u;w)−Mp(u
′;w)| ≤ Mp(|u− u′|;w) follows via

the subadditivity of p ≥ 1 power-mean functions, i.e., they are convex and have the unique zero of Mp(0;w) = 0.

Finally, to see the 1-∥·∥∞ Lipschitz property, observe that Mp(|u− u′|;w) ≤ M∞(|u− u′|;w) = ∥u− u′∥∞, which
follows from monotonicity of the power mean in p, i.e., lemma A.1.

We now show item 2. A 1
|p|√wmin

-∥·∥1 Lipschitz continuity guarantee can easily be seen by maximizing derivatives, via
lemma 3.10 item 2 (note that this limit maximizes the derivative, since the welfare function is concave and increasing). It
may seem surprising that we could get the same Lipschitz constant for ∥·∥∞, however observe that even taking two values
of ui,uj to 0 simultaneously actually results in smaller change, as it is effectively the same as increasing the weight wi of a
single group, thus the same analysis yields an ∥·∥∞ Lipschitz constant.

We now show lemma 3.13.

Lemma 3.13 (Power-Mean Hölder Continuity). Suppose u ∈ [0, r]g, group index i ∈ G, weights vector w ∈ △g, and
assume where appropriate that ui + ε ≤ r. The power mean then obeys the following Hölder continuity criteria.
1) Generic Welfare Hölder Condition: Suppose p ≤ 1. Then |Mp(u+ ε1i;w)−Mp(u;w)| ≤ r1−wiεwi , and Mp(·;w)
is r1−wmin -wmin-∥·∥∞ Hölder continuous.
2) Positive Welfare Hölder Condition: Suppose p ∈ (0, 1]. Then |Mp(u+ ε1i;w)−Mp(u;w)| ≤ r1−pwi

p εp. Further-
more, Mp(·;w) meets the following Hölder conditions:



Cyrus Cousins

A) r1−pwmax

p -p-∥·∥1 ;
B) r1−p 1

p -p-M1(|·|;w); &
C) r1−p 1

p -p-∥·∥∞ .

Proof. Due to the complicated and multifaceted nature of this result, we break the proof into several parts. Before showing
the first item, we begin with two auxiliary results that will prove useful throughout.

We first note that a generic way to show λ-α-|·| Hölder continuity w.r.t. ui is to show that

sup
u,ε

|Mp(u+ ε1i;w)−Mp(u;w)|
εα

≤ λ ,

and similar techniques can be used to analyze Hölder continuity w.r.t. norms over per-group differences.

We now note that due to its scale-dependence, it is often convenient to show local Hölder continuity, i.e., Hölder continuity
over a bounded region. For simplicity, we assume that utility values have range [0, 1], and then extend this analysis to a
larger region through the multiplicative linearity axiom. The remainder of the proof assumes WLOG this range, and the
below analysis is applied to produce the final (range-dependent) result.

Observe that if f(x) exhibits multiplicative linearity (as do all power means, by the multiplicative linearity axiom), and
is λ-α Hölder continuous, then for any r > 0, it holds that x 7→ rf(xr ) is r1−αλ-α Hölder continuous. To see this, first
suppose f(x) exhibits multiplicative linearity and is λ-α Hölder continuous. Then g(x)

.
= rf(xr ) obeys

|g(x)− g(y)|
|x− y|α

=

∣∣rf(xr )− rf(yr )
∣∣

|x− y|α
=

r
∣∣f(xr )− f(yr )

∣∣
rα
∣∣x
r −

y
r

∣∣α = r1−α

∣∣f(xr )− f(yr )
∣∣∣∣x

r −
y
r

∣∣α ≤ r1−αλ .

We now show item 1. We first consider the case of p = 0, i.e., we analyze the Nash social welfare W0(·;w). In this case,
observe that the most rapid change to M0(u;w) occurs as some ui approaches zero, and furthermore, the degree of change
is maximized when each remaining uj = 1, i.e., is maximized (this much is clear from concavity). In particular, for each
i ∈ G, taking α = wi, here we have

sup
u,ε

|M0(u+ ε1i;w)−M0(u;w)|
εwi

≤ 1

εwi

∣∣M0(0+ ε1i + 1G\{i};w)−M0(0+ 1G\{i};w)
∣∣ CONCAVITY

MONOTONICITY

=
1

εwi
exp (wi ln(ε) + (1−wi) ln(1)) DEFINITION OF M0(·;w)

=
1

εwi
exp (wi ln(ε)) = 1 , ALGEBRA

from which we may conclude λ = 1. This is enough to bound the Hölder constants for the ∥·∥1 norm, however observe
that even taking two values of ui,uj to 0 simultaneously actually results in slower growth, as it is effectively the same as
increasing the weight wi, and the Hölder constants are actually higher for smaller weights values wi. We thus conclude that
the same bounds hold for the ∥·∥∞ case.

The above completes item 1 for p = 0, so we now show that the result holds for all p ≤ 1. In other words, we show that
p = 0 is in some sense the “worst case” for small-scale local deviations. To see this, observe that, for any ε > 0, i ∈ G,
it holds that Mp(u + ε1i;w) −Mp(u;w) is decreasing as p → 0, from both the positive and negative sides. We thus
conclude that λ-α-∥·∥ Hölder continuity for M0(u;w) implies the same for Mp(u;w).

We now show item 2. Assume p ∈ (0, 1]. Observe then that

sup
u,ε

|Mp(u+ ε1i;w)−Mp(u;w)|
εp

= sup
ε∈(0,1)

|Mp(⟨ε, 1⟩; ⟨wi, 1−wi⟩)−Mp(⟨0, 1⟩; ⟨wi, 1−wi⟩)|
εp

CONCAVITY
MONOTONICITY

= sup
ε∈(0,1)

(wiε
p + (1−wi))

1
p − (1−wi)

1
p

εp
DEFINITION OF Mp(·;w)

≤ sup
ε∈(0,1)

1
pwiε

p + (1−wi)
1
p − (1−wi)

1
p

εp
SEE BELOW

=
wi

p
. ALGEBRA
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For the step marked SEE BELOW, suppose a, b ≥ 0 s.t. a+ b ≤ 1. Then for all c ≥ 1, it holds that (a+ b)c ≤ ca+ bc. This
algebraic manipulation yields the result.

From here, item A follows immediately, and item B follows via a similar argument (i.e., the total weighted deviation, as
measured by Mp(|·|;w), plays the role of ε). Finally, item C follows from item B by noting that, for any u ∈ Rg

0+ and
weights vector w ∈ △g , it holds that ∥u∥1,w ≤ ∥u∥∞ ≤ ∥u∥1.

A.2 Analysis of Fair-PAC Learning

We now show theorem 4.1.
Theorem 4.1 (Hölder Continuity and Welfare Optimality). Suppose W(·;w) is λ-α-∥·∥W Hölder continuous w.r.t. some
norm ∥·∥W, and additive error bounds ε that obey (3). Then

sup
h∈H

∣∣∣∣W(i 7→ E
Di

[u ◦ h];w
)
−W

(
i 7→ Ê̂

Di

[u ◦ h];w
)∣∣∣∣≤λ∥ε∥αW.

Consequently, the empirical welfare maximizer

ĥ
.
= sup

h∈H
W

(
i 7→ Ê̂

Di

[u ◦ h];w
)

approximates the true welfare maximizer

h⋆ .
= sup

h⋆∈H
W

(
i 7→ E

Di

[u ◦ h⋆];w

)
,

in terms of welfare-optimality, as it holds that

W

(
i 7→ E

Di

[u ◦ ĥ];w
)
≥W

(
i 7→ E

Di

[u ◦ h⋆];w

)
− 2λ∥ε∥αW .

Proof. The first portion of the result follows directly from the assumption, and the definition of Hölder continuity (defini-
tion 3.11).

The next applies a standard technique in learning theory, wherein the first bound is applied twice: once for h⋆ and once
more for ĥ, alongside the fact that, by definition ĥ realizes the supremum over the empirical welfare. In particular, we have

W

(
i 7→ E

Di

[u ◦ ĥ];w
)
≥W

(
i 7→ Ê̂

Di

[u ◦ ĥ];w
)
− λ∥ε∥αW FIRST PORTION ON ĥ

≥W

(
i 7→ Ê̂

Di

[u ◦ h⋆];w

)
− λ∥ε∥αW W

(
i 7→ Ê̂

Di

[u ◦ ĥ];w
)
≥W

(
i 7→ Ê̂

Di

[u ◦ h⋆];w

)
≥W

(
i 7→ E

Di

[u ◦ h⋆];w

)
− 2λ∥ε∥αW . FIRST PORTION ON h⋆

We now show theorem 4.2.
Theorem 4.2 (Welfare Sample Complexity). Suppose sample complexity function mH(ε, δ, r,d) for hypothesis classH,
and some welfare function W(·;w) that is λ-α-∥·∥∞ Hölder continuous. Then the sample complexity function

mW,H(ε, δ, g, r,d) ≤ mH

(
α
√

ε
λ ,

δ
g , r,d

)
is sufficient, i.e., for at least this many samples from each of the g groups, (5) holds. Moreover, for this sample size, with
probability at least 1− δ, the empirical welfare maximizer is 2ε-optimal.

Proof. This result essentially follows from theorem 4.1 and the definitions of sample complexity and Hölder continuity. By
definition, a sample of size at least mH

(
α
√

ε
λ , δ, r,d

)
ensures a probability 1− δ bound on the supremum deviation for a

single group, and thus by union bound, a sample of size at least mH

(
α
√

ε
λ ,

δ
g , r,d

)
ensures a probability 1− δ on the ∥·∥∞

norm of per-group supremum deviations over all groups, i.e., it shall hold with the above probability that ∥ε∥∞ ≤ α
√

ε
λ .

Then, applying theorem 4.1 yields

sup
h∈Hd

∣∣∣∣W(i 7→ E
Di

[u ◦ h];w
)
−W

(
i 7→ Ê̂

Di

[u ◦ h];w
)∣∣∣∣ ≤ λ∥ε∥α∞ ≤ λ

(
α

√
ε

λ

)α
= ε .

As we have ε-estimated W(·;w) with this sample, we may conclude that mW,H(ε, δ, g, r,d) ≤ mH
(
α
√

ε
λ , δ, r,d

)
. Finally,

the statement about approximate optimality of the empirical welfare maximizer follows from the second portion of
theorem 4.1.
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We now show theorem 4.4.

Theorem 4.4 (Characterizing FPAC Learnability). Suppose some weighted power-mean welfare function Wp(·;w), utility
function u with range r, and hypothesis classH with sample complexity function mH(ε, δ, r,d) ∈ Poly( 1ε , log

1
δ , r,d). We

then bound the sample complexity m
.
= mW,H(ε, δ,W, g,d) of FPAC learningH w.r.t. welfare classW .

= {W(·;w)} as

1) m ≤ mH
(

α
√

ε
2λ
, δ

g , r,d
)
∈ Poly

(
α√
λ, 1

α
√
ε
, log 1

δ , log g, r,d
)
;

2) p ∈ (0, 1] =⇒ m ∈ Poly
(

p
√
r, 1

p
√
p ,

1
p
√
ε
, log 1

δ , log g,d
)
;

3) p = 0 =⇒ m ∈ Poly
(

wmin
√
r, 1

wmin
√
ε
, log 1

δ , log g,d
)
;

4) p < 0 =⇒ m ∈ Poly
(

1
ε ,

1
|p|√wmin

, log 1
δ , log g, r,d

)
; &

5) for any c ∈ (0, 1), if |p| ≥ c and group weights obey the nonnegligibility condition wmin ≥ c
g , then m ∈

Poly
1
c
(
1
c ,

1
ε , g, log

1
δ , r,d

)
.

Proof. In each case, the FPAC learning algorithm A(D1:g,W, ε, δ,d) is simply empirical welfare maximization on a
sufficiently large sample, thus we need only bound the size of such a sufficient sample. Each item of this result is essentially
a direct consequence of theorem 4.2, with lemmata 3.12 & 3.13 to bound Lipschitz and Hölder constants. It thus suffices to
bound the constants λ for λ-∥·∥∞ Lipschitz continuity, or λ and α for λ-α-∥·∥∞ Hölder continuity, for each of the classes
under consideration.

In particular, item 1 follows from theorem 4.2 applied to any W(·;w) in the class under consideration. Then, items 2 & 3
follow from item 1, using lemma 3.13 items 2C & 1, respectively, to bound λ and α, and item 4 follows similarly, except
using lemma 3.12 item 2 to bound the Lipschitz constant λ (thus α = 1).

Finally, item 5 is slightly more involved, but again essentially reduces to item 1. In particular, observe that |p| ≥ c means we
need not consider p ≈ 0, and since c is constant, any exponential dependence on c remains polynomial in the remaining
variables. Along with the nonnegligibility condition wmin ≥ c

g , this allows us to control the dependence of the Lipschitz
constant λ for p ≤ −c as λ ≤ 1

|p|√wmin
≤ ( gc )

1
c , thus λ ∈ Poly

1
c (g, 1

c ) for p ≤ −c. Similarly, for p ≥ c, note that for
welfare functions we need only consider p ≤ 1, and observe that for α = c, we have λ = r1−c

c by lemma 3.13 item 2C,
which yields only Poly

1
c ( 1c ,

1
ε ) sample complexity terms. In either case, the desideratum is shown.

B Supplementary Experiments

We now present two additional one-armed bandit experiments using beta and Bernoulli noise models. Here utility samples are
range [0, 1] i.i.d. random variables with mean ui for each group i. For the Bernoulli model, we use BERNOULLI(ui) random
variables, and for the beta model, we use BETA(ui, 1− ui), which acts as continuous approximation of a BERNOULLI(ui)
coin, avoiding issues of discreteness, with exactly half the variance. The main difference here is that the variance of each
estimator is now dependent on ui, being either ui(1−ui)

mi
≤ 1

4mi
in the Bernoulli case, or ui(1−ui)

2mi
≤ 1

8mi
in the beta case,

as opposed to 1
12mi

in the uniform case. For all values of ui sufficiently far from 1
2 , these variance values are much smaller

than under the uniform noise model, so we use only m = 50 samples unless otherwise noted.
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Figure A1: Estimating the Welfare of a 1-Armed Bandit under Bernoulli Noise. Each plot studies the response of welfare to
one parameter, and the remaining parameters are selected from p = 0, u = ⟨0.99, 0.01⟩, w = ⟨ 12 ,

1
2 ⟩, and m = 50. All axes

are linear, except A1a, which plots p ∈ [−∞, 1] by transforming x = 1
π arctan(1− p), and A1d, which is logarithmic in x.
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Figure A2: Estimating the Welfare of a 1-Armed Bandit under Beta Noise. Each plot studies the response of welfare to one
parameter, and the remaining parameters are selected from p = 0, u = ⟨0.99, 0.01⟩, w = ⟨ 12 ,

1
2 ⟩, and m = 50. All axes are

linear, except A2a, which plots p ∈ [−∞, 1] by transforming x = 1
π arctan(1− p), and A2d, which is logarithmic in x.

The remainder of the experimental setup is identical to that under the uniform noise model, as described in section 5. In
particular, we vary the parameters p, minority utility u2, minority group weight w2, and sample size m in order to study
performance around the particularly challenging p ≈ 0 and wmin ≈ 0 domains, and present the results in figures A1 & A2.

The beta and Bernoulli experiments are largely similar to the uniform noise experiment of section 5. In figures A1b & A2b
which adjust the minority group utility u2, we observe that as the minority utility tends to 0, the empirical confidence
intervals remain surprisingly wide, especially when considering that the variance of this coin is extremely small (also tending
to 0). In contrast, as the coin bias tends to 1, confidence intervals get much smaller, as here again variance goes to 0, and
here the welfare function is not sensitive to small changes. Note also that, generally speaking, the lower variances under the
beta noise model (figure A2) result in tighter confidence bounds than the Bernoulli noise model (figure A1).
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