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Learning Fair Linear Classifiers

• Fair machine learning considers multiple groups (x1:g,1:m ,y1:g,1:m)

• We can handle each group individually
• Empirical utility maximization

• What is the best classifier overall?

• Empirical welfare maximization
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Welfare in Machine Learning

• Cardinal welfare functions mathematically quantify overall wellbeing
• Welfare W(·) encodes an ideal notion of societal wellbeing (fairness)
• Many reasonable choices available

• The social planning problem
• Select allocation of goods and services to maximize welfare
• Fair ML learns a policy from data to maximize welfare of per-group utilities

• Welfare maximization in machine learning:
• Assume a utility function U(·), per-group distributions D1, . . . ,Dg

h∗ .
= argmax

h∈H
W

(
E

(x,y)∼D1

[
U(h(x), y)

]
︸ ︷︷ ︸

Group 1 Expected Utility

, . . . , E
(x,y)∼Dg

[
U(h(x), y)

]
︸ ︷︷ ︸
Group g Expected Utility

)

Don’t know D1:g; have to work from training samples x1:g,y1:g
• Select ĥ to optimize empirical welfare

ĥ .
= argmax

h∈H
W

(
Ê

(x,y)∈(x1,y1)

[
U(h(x), y)

]
, . . . , Ê

(x,y)∈(xg,yg)

[
U(h(x), y)

])
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ĥ .
= argmax

h∈H
W

(
Ê
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The Power-Mean Welfare Function

Suppose: Positive utility vector u = 〈u1, . . . ,ug〉 representing utility of each group
Positive weights vector w that sums to 1

Wp(u;w)
.
=



p ∈ R±
p

√√√√ g∑
i=1

wiup
i

p = −∞ min
i∈1,...,g

ui

p = 0

g∏
i=1

uwi
i

p =∞ max
i∈1,...,g

ui

−20 −10 0 10 20

1

2

3

(1, 2)

p

Wp(〈1, 2, 3〉; 13)
W±∞(〈1, 2, 3〉; 13)

• Smooth interpolation between minimum, arithmetic mean, and maximum
• Other special cases: geometric, harmonic, and quadratic means
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Continuity of Welfare Functions

• Continuity, coarsely speaking:
• Small changes to utility values 7→ small changes to welfare

Wp(u;w) ≈Wp(u ± ε;w)

• Implications to philosophy, stability, and estimation
• Notions of stability lead to statistical, privacy, and robustness guarantees

• Standard axiom: assume the ε-δ limit definition of continuity for welfare
• Stronger continuity properties imply stronger guarantees!
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A Deep Dive Into Continuity

Definition (Hölder Continuity)
W(u;w) is Hölder continuous in u with respect to norm ‖·‖W if there exist

1 scale λ ≥ 0

2 power α ∈ (0, 1]

such that for all u,u′, it holds that∣∣W(u;w)−W(u′;w)
∣∣ ≤ λ

∥∥u − u′∥∥α
W .

Such a function is λ-α-‖·‖W Hölder continuous.
If α = 1, it is λ-‖·‖W Lipschitz continuous.

• Lipschitz: bound the impact of infinitessimal changes
• Hölder: bound the impact of small changes

ε-δ Limit
Continuity

λ-α Hölder
Continuity

λ Lipschitz
Continuity
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Small-Scale Behavior of Power-Means

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

W1(
〈x, 1
〉)

∂

∂ui
Wp(u;w) = wi

(
ui

Wp(u;w)

)p−1

︸ ︷︷ ︸
Relative utility

Assuming unit range
1 p ≥ 1: 1-‖·‖∞ Lipschitz

2 p ∈ (0, 1): 1
p -p-‖·‖∞ Hölder

3 p = 0: 1-wmin-‖·‖∞ Hölder

4 p < 0: 1
|p|√wmin

-‖·‖∞ Lipschitz

The “difficult cases:”
• p → 0

• wmin → 0 for p < 1
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Fair-PAC Learning: CliffsNotes

• PAC Learning
• Probably approximately optimize expected utility over class H
• Uniformly bound sample complexity of learning
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Suppose
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2 welfare function W(·;w) ∈ W
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A can identify a hypothesis ĥ ∈ H such that
1 A has mW,H(ε, δ,W, g) sample complexity (per-group)
2 with probability at least 1− δ, ĥ obeys

W

(
E

(x,y)∼D1

[
U(ĥ(x), y)

]
, . . . ;w

)
︸ ︷︷ ︸

Learned model welfare

≥ argmax
h∗∈H

W

(
E

(x,y)∼D1

[
U(h∗(x), y)

]
, . . . ;w

)
︸ ︷︷ ︸

Optimal model welfare

−ε
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Uniform Convergence

• Suppose that for a sample (x,y) of size mH(ε, δ), it holds that

P
x,y

(
sup
h∈H

∣∣∣∣ED[U ◦ h]− Ê
x,y

[U ◦ h]
∣∣∣∣ > ε

)
< δ .

• Many ways to show this:
• Vapnik-Chervonenkis dimension
• Rademacher averages

←− h ∈ H −→←
Ut

ili
ty

(B
ou

nd
)
→

Estimated Ê
x,y
[U ◦ h]
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Uniform Convergence and FPAC Learning

Uniform Convergence:

P
x,y

(
sup
h∈H

∣∣∣∣ED[U ◦ h]− Ê
x,y

[U ◦ h]
∣∣∣∣ > ε

)
< δ

• What does uniform convergence give us?
• Asymptotic consistency of empirical utility maximizer ĥ
• UC implies PAC with sample complexity mH( ε2 , δ)

• By ε-δ limit continuity of W(·;w) alone:
• Consistency of empirical welfare maximizer ĥ

Convergence rate depends on welfare function

• By how much does W(·;w) magnify error?
• Hölder continuity analysis

0 0.1 0.2

0
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0.2

0.3
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0
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x,y

[U ◦ h]
∣∣∣∣ > ε

)
< δ

• What does uniform convergence give us?
• Asymptotic consistency of empirical utility maximizer ĥ
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Characterizing Fair-PAC Learnability

Theorem (Welfare Estimation Sample Complexity)
Suppose uniform convergence, i.e., that for sample size mH(ε, δ), it holds that

P
x,y

(
sup
h∈H

∣∣∣∣ED[U ◦ h]− Ê
x,y

[U ◦ h]
∣∣∣∣ > ε

)
< δ .

Then H is FPAC-learnable with sample complexity

mW,H(ε, δ,W, g) ≤ mH

(
α

√
ε

2λ
,
δ

g

)
.

• Sample complexity of ε-δ learning is usually mH(ε, δ) ∈ O
(

ln 1
δ

ε2

)
• Fair-learning the class of all weighted power-means:

mW,H(ε, δ,W, g) ≤ mH

(
α

√
ε

2λ
,
δ

g

)
∈ O

λ
2
α ln g

δ

ε
2
α

 ⊆ O
(

ln g
δ

ε
2

wmin

)
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Axiomatic Characterization of Welfare Classes

−∞
p=0 p=1

∞

Egalitarian
W−∞(u)

Utilitarian
W1(u;w)

Nash
W0(u;w)

Egalitarian
W∞(u)

−∞ ∞Lipschitz Continuity
1

|p|√wmin
-‖·‖∞ p

√wmax-‖·‖1, 1-‖·‖∞
1
p -p-‖·‖∞−∞ ∞Hölder Continuity

1-wmin-‖·‖∞
Extended Axioms

SM0

SWTP

0B

FC
p=0 p=1

• Axiomatic characterization of welfare functions
• Uniquely satisfied by Wp(·;w) for p ≤ 1

• Additional axioms further restrict p
• FPAC learning efficiency varies by region!

• p ≥ 1 used similarly for malfare and disutility
• Studied in prior work
• Entire class is uniformly FPAC-learnable (Lipschitz)
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Bandit Experiments
• The Multi-Group One-Armed Bandit

• Each arm-pull contributes some utility to each of two groups
• Estimate the welfare of the expected utilities of each group

• Unless otherwise noted:
• u = 〈0.999, 0.001〉
• w = 〈 23 ,

1
3 〉

• m = 100 samples
• p = 0
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Conclusion
• Axiomatically characterize class of fair welfare functions

• Act as objective metric of subjective utility
• Fairness (welfare) varies interpersonally
• “Reasonable axioms” describe “reasonable people”

Wp(u;w)
.
= p

√√√√ g∑
i=1

wiup
i

• Analyze continuity properties of fair welfare functions
• Lipschitz and Hölder continuity∣∣W(u;w)−W(u ′;w)

∣∣ ≤ λ
∥∥u − u ′∥∥α

W

• Fair-PAC learnability for all welfare functions W in class W
• Uniform convergence implies FPAC-Learnability
• Polynomial sample complexity preserved except as p → 0 or wmin → 0

mW,H(ε, δ,W, g) ≤ mH

(
α

√
ε

2λ
,
δ

g

)
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