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® Empirical utility maximization
® What is the best classifier overall?
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fe fo e Cardinal welfare functions mathematically quantify overall wellbeing
Welfare- ® Welfare W(-) encodes an ideal notion of societal wellbeing (fairness)
Learning ® Many reasonable choices available

® The social planning problem

® Select allocation of goods and services to maximize welfare
® Fair ML learns a policy from data to maximize welfare of per-group utilities

® Welfare maximization in machine learning:
® Assume a utility function U(-), per-group distributions Dy, ..., D,

h* = argmax W E [U(h(2),9)],..., E _[U(h(z),9)]
heH (I)y)NDI ("E’y)NDg
Group 1 Expected Utility Group g Expected Utility

/\ Don't know D;.4; have to work from training samples 1., 1.4

® Select h to optimize empirical welfare

h = argmax W < B [U(h(a:), y)] .. E [U(h(m), y)])

heH (z,9)€(z1,91) " (2,y)€(2g,99)
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® Smooth interpolation between minimum, arithmetic mean, and maximum
® Other special cases: geometric, harmonic, and quadratic means
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e Continuity, coarsely speaking:

® Small changes to utility values — small changes to welfare

Continuity

Analysic Wp(’u,, ’11)) ~ Wp(’l.l, + o ’lU)

® |mplications to philosophy, stability, and estimation
® Notions of stability lead to statistical, privacy, and robustness guarantees

® Standard axiom: assume the £-¢ limit definition of continuity for welfare
® Stronger continuity properties imply stronger guarantees!
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R Decfinition (Holder Continuity)
W (u; w) is Hélder continuous in u with respect to norm |||y if there exist
Continuity @ scale A >0
Analysis

@® power a € (0, 1]
such that for all w, «/, it holds that

‘W(u; w) — W(u'; w)‘ < )\HU - UIH%I :

Such a function is A-a|-||yy Holder continuous.
If o =1, it is M|||\y Lipschitz continuous.

® lipschitz: bound the impact of infinitessimal changes
e Holder: bound the impact of small changes

A Lipschitz A-a Holder e-0 Limit
Continuity Continuity Continuity
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e Fair-PAC Learning

® Probably approximately optimize welfare over class ‘H
® Uniformly bound sample complexity of learning
® Worst-case over distributions D;.,, welfare functions W € W
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Definition (Fair-PAC Learning)

Suppose
@ hypothesis class H C X — )/ © welfare class W C Rg+ — Ro+

@® utility function U: )’ x Y — Roy

H is fair-PAC-learnable if there exists an algorithm A such that for any

@ distributions D;., over (X x V) © additive error ¢ > 0
@® welfare function W(-; w) e W @ failure probability 6 € (0,1)

A can identify a hypothesis h € H such that
® A has myy (g,0, W, g) sample complexity (per-group)
® with probability at least 1 — d, h obeys

W((m E [U(ﬁ(m),y)],...;w) ZargmaxW( E [U(h*(w),y)],...;w) —€

y)~D1 h*eH (z,y)~D1

Learned model welfare Optimal model welfare
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® Suppose that for a sample (z, y) of size my(e,0), it holds that

P [ sup
LY\ heH

e Many ways to show this:
® Vapnik-Chervonenkis dimension

+ Utility (Bound) —

Rademacher averages

E[U o h)

D

E [Uo h]

m?y

‘>5><6.

— Estimated E[Uoh] i

z,y

True E[U o A
D
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® What does uniform convergence give us?

® Asymptotic consistency of empirical utility maximizer h
® UC implies PAC with sample complexity my(5,0)

® By &-¢ limit continuity of W(-; w) alone:
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® Asymptotic consistency of empirical utility maximizer hool .
® UC implies PAC with sample complexity my(5,0)

® By &-¢ limit continuity of W(-; w) alone:
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® What does uniform convergence give us?

® Asymptotic consistency of empirical utility maximizer hool .
® UC implies PAC with sample complexity my(5,0)

® By &-¢ limit continuity of W(-; w) alone:
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® What does uniform convergence give us?

® Asymptotic consistency of empirical utility maximizer hool .
® UC implies PAC with sample complexity my(5,0) @

® By &-¢ limit continuity of W(-; w) alone:

® Consistency of empirical welfare maximizer h 0.1 |
/\ Convergence rate depends on welfare function | |
® By how much does W(-; w) magnify error? 0

® Holder continuity analysis 2e
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Characterizing Fair-PAC Learnability
Theorem (Welfare Estimation Sample Complexity)

Suppose uniform convergence, i.e., that for sample size my(e,d), it holds that
P | sup
Fair PAC
Learning

E[Uo A — E[Uoh]‘ >5> <4 .
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Then H is FPAC-learnable with sample complexity
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Characterizing Fair-PAC Learnability
Theorem (Welfare Estimation Sample Complexity)

Suppose uniform convergence, i.e., that for sample size my(e,d), it holds that
P | sup
Fair PAC
Learning

E[Uo A — E[Uoh]‘ >5> <4 .
2,9\ hett|D 2y

Then H is FPAC-learnable with sample complexity

fe §
mW,H(€767W) g) S I].'l’}.[ <a 2)\7g> o

® Sample complexity of -9 learning is usually my (e, d) € O(

e2>
® Fair-learning the class of all weighted power-means:

2
1) Aalnd
myy 3(g,6, W, g) <my (a 28)\,9) €0 1o

Lhat 2
2 g 0 2
Ea € Ymin
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® Axiomatic characterization of welfare functions
® Uniquely satisfied by W,(-; w) for p <1
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® FPAC learning efficiency varies by region! 0B
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Egalitarian Nash Utilitarian Egalitarian
W_oo (1) Wo(u;w)  Wi(u;w) Woo(w)
—oo ¢, o o JN oo
Lo (oo 2B p=l
Fair PAC Ipschitz Continuity !
earnin —Oo0 O oo
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A
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Extended Axioms
® Axiomatic characterization of welfare functions
® Uniquely satisfied by W,(-; w) for p <1 SMo

® Additional axioms further restrict p SWTP (/1/—0-\]\)

® FPAC learning efficiency varies by region! 0B
® p > 1 used similarly for malfare and disutility

® Studied in prior work FC
® Entire class is uniformly FPAC-learnable (Lipschitz) p=0 p=1
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Cyrus Cousins

® Axiomatically characterize class of fair welfare functions
® Act as objective metric of subjective utility
® Fairness (welfare) varies interpersonally
® “Reasonable axioms" describe “reasonable people”

Fair PAC
Learning

® Analyze continuity properties of fair welfare functions
® Lipschitz and Holder continuity

(W (u; w) — W(u';w)| < Au— u’sz

e Fair-PAC learnability for all welfare functions W in class W
® Uniform convergence implies FPAC-Learnability
® Polynomial sample complexity preserved except as p — 0 or Wy, — 0

)
myy x(g,0, W, g) < my \a/ﬁ,g
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