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Fairness in Machine Learning (or Lack Thereof)

m ML systems often trained on group A, then applied to group B
Accuracy of Face Recognition Technologies
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Face Recognition Technology
m Differential performance = algorithmic discrimination
m Facial recognition and policing
m Speech recognition and accessibliity
m Many more examples
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The Power Mean

Suppose vector £ = (€1,...,€,) representing utility or loss across a population
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m Smooth interpolation between min, arithmetic mean, and max

m Other special cases: geometric, harmonic, and quadratic means
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Learning Fair Linear Classifiers
m We can handle each group |nd|V|duaIIy

R(h; 2, y;) = ZE (@), yi,5); Vi h; = argmin R(h; z;, y;)
heH
m What is the best classifier overa//?

m Empirical malfare minimization h = argmin A\ (R(h, T, Y1), f{(h, oo, yg))

heH
1 B Class A
B Class B
q |  Linear Separator
3t Group 1
C Group 2

t
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Support vector machine (hin;

01 loss

— Logistic regression (cross entropy loss) e

~ Losses weighted by group-conditional lahel frequencies

+ Predict whether income is < or > 50,0008 per annum

« Minimize malfare over 5 cthnic groups
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1. Assuming only monotonicity

Suppose Vo € 25 §(w) — e(w) < 5(w) < 8(w) + e(w). Then

M0V (8 - e)iw) < My(S: ) < My(S + €5w)

where a /b denotes the (clementwise) maximum,

2. Suppose range r. Then with probabilty at least 1~ 5 over choice of
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