
Axiomatic Fair
Learning

Cyrus Cousins

NeurIPS2021

Philosophy,
Welfare, and
Malfare
Welfare

Malfare

Axiomatic
Characterization

Estimation
and Inference
Linear Classifiers

Statistical Estimation

Fair PAC
Learning
Computational
Learnability

In Conclusion

An Axiomatic Theory of Provably-Fair
Welfare-Centric Machine Learning

Cyrus Cousins

Brown University
Department of Computer Science

December 2021

http://cs.brown.edu/people/ccousins/

http://cs.brown.edu/people/ccousins/


Axiomatic Fair
Learning

Cyrus Cousins

NeurIPS2021

Philosophy,
Welfare, and
Malfare
Welfare

Malfare

Axiomatic
Characterization

Estimation
and Inference
Linear Classifiers

Statistical Estimation

Fair PAC
Learning
Computational
Learnability

In Conclusion

Fairness in Machine Learning (or Lack Thereof)
• ML systems often trained on group A, then applied to group B

[Gender
Shades
Project

]

• Differential performance =⇒ algorithmic discrimination
• Facial recognition and policing
• Speech recognition and accessibility
• Many more examples

• What has gone wrong? Is the problem:
1 that a machine is learning;
2 from what a machine is learning; or
3 how a machine is learning?
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In Conclusion

Talk Outline

• Focus on differential accuracy between protected groups
• Want group level fairness
• Learn from sample of many individuals drawn from each group

• Claim: current ML systems are trained:
• On the wrong dataOn the wrong data (well-known)
• In the wrong wayIn the wrong way

• Optimize models sensitive to performance on protected-groups
• Introduce malfaremalfare learning target
• Consider all groups (possibly nonlinearly)

• Theoretical treatment of learninglearning and statisticsstatistics
• Overfitting and statistical estimation
• Computational complexity issues in learning
• Introduce fair-PAC-learning to theoretically treat these issues
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First Canto: The Philosophy of Welfare and Malfare

Fair machine learning and the social planning problem
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In Conclusion

What is Welfare

• Utility: U(·) : X → R0+ Subjective measurement of positive attribute
• Happiness, satisfaction, resource ownership ←−−−−−−−−−−−−−−−→

• Welfare summarizes population-level utility across x = (x1, . . . ,xg)
“The subjective, measured objectively.”
• Utilitarian welfare: average utility U(·)

WUtil
(
U(x1), . . . ,U(xg)

) .
=

1

g

g∑
i=1

U(xi)

• Egalitarian welfare: worst-case utility U(·)

WEgal
(
U(x1), . . . ,U(xg)

) .
= min

i∈1,...,g
U(xi)

• A fair society should have equality
• Incentivize aiding the most needy first
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In Conclusion

What is Welfare (cont.)

Pop. A Pop. B Pop. C

Utilitarian
Egalitarian

• Limitations
• Nonnegativity
• Positive directedness (utility is desirable)

• Which welfare function to use?
• Analogy: worst-case vs average case bounds
• Analogy: tail bounds vs expectation
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What is Welfare (cont.)

Pop. A Pop. B Pop. C

Utilitarian

Egalitarian

• Limitations
• Nonnegativity
• Positive directedness (utility is desirable)

• Which welfare function to use?
• Analogy: worst-case vs average case bounds
• Analogy: tail bounds vs expectation
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In Conclusion

The Power Mean

Suppose vector ` = (`1, . . . , `g) representing utility or loss across a population

Mp(`)
.
=



p ∈ R \ {0} p

√√√√1

n

n∑
i=1

`p
i

p = −∞ min
i∈1,...,g

`i

p = 0 n

√√√√ n∏
i=1

`i

p =∞ max
i∈1,...,g

`i
−20 −10 0 10 20

1

2

3

p

Mp(1, 2, 3)

M−∞(1, 2, 3)

M∞(1, 2, 3)

• Smooth interpolation between min, arithmetic mean, and max
• Other special cases: geometric, harmonic, and quadratic means

• Monotonic in p: interpolate between utilitarian and egalitarian
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In Conclusion

Welfare in Machine Learning

• Why do we care about cardinal welfare?
• Welfare W(·) encodes an ideal notion of societal wellbeing (fairness)
• Utilitarian versus Egalitarian

• The social planning problem
• Select allocation of goods and services to maximize welfare
• Fair ML is learning an optimal allocation from data?
• Learn policy to maximize welfare of per-group utilities

Is it really that easy?

What if we want to minimize a loss function?
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In Conclusion

Introducing Malfare
• Standard: maximize a welfare measure of societal wellbeing W(·)
• This work: minimize a malfare measure of societal suffering W

(·)
• Generically termed aggregator functions M(·)

• Is this really a new idea?
• Everybody knows ∀i : argmax

h∈H
−`i(h) = argmin

h∈H
`i(h)

• But we don’t have argmax
h∈H

Wp(−`(h)) = argmin
h∈H

W

p(`(h))
• Welfare is a multivariate optimality concept
• Intuition from univariate optimization breaks down

• We shall see equal axiomatic justification for welfare and malfare

Utility 5 4 3 2 1
Loss 1 2 3 4 5

• Malfare extends the concept of welfare to
undesirable quantities (disutility)

• Direct correspondence only for p ∈ {−∞, 1,∞}
−20 −10 0 10 20

0

1

2

3

p

Mp(1, 2, 3)

4−M2−p(4−(1, 2, 3))
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Fair Machine Learning with Malfare Minimization
• Standard machine learning over instance distribution D

• Machine learning tasks often cast as risk minimization w.r.t. loss function `

h∗ .
= argmin

h∈H
E

(x,y)∼D
[`(h(x), y)]

• In fair machine learning, different groups have different needs and preferences
• Need to consider multiple distributions D1, . . . ,Dg over multiple groups
• Analogously cast learning tasks as malfare minimization

h∗ .
= argmin

h∈H

W

(
E

(x,y)∼D1

[
`(h(x), y)

]
, . . . , E

(x,y)∼Dg

[
`(h(x), y)

])

• Contrast with welfare maximization:
Need to define a utility function U(·)

h∗ .
= argmax

h∈H
W

(
E

(x,y)∼D1

[
U(h(x), y)

]
, . . . , E

(x,y)∼Dg

[
U(h(x), y)

])

Don’t know D1:g; have to work from training samples
• Select ĥ to optimize empirical risk / malfare / welfare estimates
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In Conclusion

Axioms of Cardinal Welfare
1 Strict Monotonicity: ∀ε � 0 s.t. ε 6= 0: M(`) < M(`+ ε)

• Adding utility never harms welfare

2 Symmetry: ∀ permutations π: M(`) = M(π(`))
• No exceptionalism; welfare is identity blind
• Inherent tenet of fairness and equality

3 Continuity: ∀` : {`′ | M(`′) ≤ M(`)} and {`′ | M(`′) ≥ M(`)} are closed sets
4 Independence of Unconcerned Agents (IUA):
∀a, b ∈ R+ : M(`, a) ≤ M(`′, a)⇔ M(`, b) ≤ M(`′, b)
• Compartmentalization and analysis of subgroups

5 Independence of Common Scale (ICS):
∀α ∈ R+ : M(`) ≤ M(`′) =⇒ M(α`) ≤ M(α`′)
• Relative value invariant under (absolute) unit conversion: $ versus P

Theorem (Debreu-Gorman (1959))
For some strictly increasing F , p ∈ R, all welfare functions satisfying 1-5 take form

M(`) = F
(

sgn(p)
g∑

i=1

`p
i

)
or M(`) = F

( g∏
i=1

`i

)
Can be non-Lipschitz, arbitrarily hard to estimate from sample
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Extended Axioms of Cardinal Welfare

1 Strict Monotonicity: ∀ε � 0 s.t. ε 6= 0: M(`) < M(`+ ε)

2 Symmetry: ∀ permutations π: M(`) = M(π(`))

3 Continuity: ∀` : {`′ | M(`′) ≤ M(`)} and {`′ | M(`′) ≥ M(`)} are closed sets
4 IUA: ∀a, b ∈ R+ : M(`, a) ≤ M(`′, a)⇔ M(`, b) ≤ M(`′, b)
5 ICS: ∀α ∈ R+ : M(`) ≤ M(`′) =⇒ M(α`) ≤ M(α`′)

6 Multiplicative Linearity: M(α`) = αM(`);
• Implies ICS • Units of M(·) match units of `

7 Unit Scale: M(1) = 1

• Scale of M matches units of `
• Absolute comparison: “My income is x% of average / maximum / minimum”

Theorem (Axiomatic Characterization of Welfare and Malfare)
For any aggregator function M(·) satisfying 1-7, ∃p ∈ R s.t.

M(`) = Mp(`) =
p

√√√√1

g

g∑
i=1

`p
i or M(`) = g

√√√√ g∏
i=1

`i ,

which are Lipschitz-continuous in ` for p ∈ (−∞, 0) ∪ [1,∞).
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In Conclusion

Transfer Axioms of Cardinal Welfare

1 Strict Monotonicity: ∀ε � 0 s.t. ε 6= 0: M(`) < M(`+ ε)

2 Symmetry: ∀ permutations π: M(`) = M(π(`))

3 Continuity: ∀` : {`′ | M(`′) ≤ M(`)} and {`′ | M(`′) ≥ M(`)} are closed sets
4 IUA: ∀a, b ∈ R+ : M(`, a) ≤ M(`′, a)⇔ M(`, b) ≤ M(`′, b)
5 ICS: ∀α ∈ R+ : M(`) ≤ M(`′) =⇒ M(α`) ≤ M(α`′)

6 Multiplicative Linearity: M(α`) = αM(`)

7 Unit Scale: M(1) = 1

All apply equally well to welfare and malfare8 Pigou-Dalton Principle: Suppose `, `′ s.t. M1(`) = M1(`
′) = µ. Then∧

i∈1,...,g

(∣∣`′i − µ
∣∣ ≥|`i − µ|

)
=⇒ W(`′) ≤W(`)

9 Anti-Pigou-Dalton Principle: Suppose as in (8). Then require inverse∧
i∈1,...,g

(∣∣`′i − µ
∣∣ ≥|`i − µ|

)
=⇒ W

(`′) ≥ W

(`)

Welfare w ≤ w
Malfare m ≥ m
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∣∣ ≥|`i − µ|

)
=⇒ W(`′) ≤W(`)

9 Anti-Pigou-Dalton Principle: Suppose as in (8). Then require inverse∧
i∈1,...,g

(∣∣`′i − µ
∣∣ ≥|`i − µ|

)
=⇒ W

(`′) ≥ W

(`)

Welfare w ≤ w
Malfare m ≥ m
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Properties of Welfare and Malfare

1: Monotonicity
2: Symmetry
3: Continuity
4: IUA

5: ICS

6: × Linearity

7: Unit-Scale

Mono. in G. Mean
M(`) = (F ◦Mf )(`)

Mono. in p-Mean
M(`) = (F ◦Mp)(`)

p-Mean
M(`) = Mp(`)

8: PD

p ≤ 1
Fair Welfare

9: APD

p ≥ 1
Fair Malfare
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Second Canto: Estimation, Inference, and Fair Machine Learning

The Statistics of Fair Machine Learning as Malfare Minimization
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Learning Linear Classifiers

1 How much training data do we need?
• Concentration inequalities
• Vapnik-Chervonenkis dimension
• Rademacher averages

2 How can we learn from the data?
• Empirical Risk Minimization: select h ∈ H to optimize

R̂(h) .
=

1

m

m∑
j=1

`(h(xj),yj)

•

•

•

•

• •

•

•

•

• Class A
• Class B

| Linear Separator
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Learning Fair Linear Classifiers
• What changes with multiple groups (x1:g,1:m ,y1:g,1:m)?

• We can handle each group individually:

R̂(h;xi ,yi)
.
=

1

m

m∑
j=1

`
(
h(xi,j),yi,j

)
; ∀i : ĥi

.
= argmin

h∈H
R̂(h;xi ,yi)

• What is the best classifier overall?

• Empirical malfare minimization ĥ .
= argmin

h∈H

W(R̂(h;x1,y1), R̂(h;x2,y2)
)

☼

☼

☼

☼

☼ ☼

☼

☼

☼

$

$

$

$

$
$

$
$

☼

� Class A
� Class B
| Linear Separator

☼ Group 1
$ Group 2
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Statistical Estimation

• Suppose sample mean ˆ̀i
.
=

1

m

m∑
j=1

`(xi,j), true mean `i
.
= E

x∼Di
[`(x)]

• By continuity and the law of large numbers:

lim
m→∞

W

( ˆ̀) =

W

(`)

• For finite sample size m
• E[

W

( ˆ̀)] 6= W

(`)
• W

( ˆ̀) is a biased estimator of W

(`)!

Theorem (A Hoeffding-Type Malfare-Estimation Bound)
Suppose fair malfare W

p(·) (p ≥ 1), g groups, and loss range r . Then with
probability at least 1− δ ∣∣∣ W

(`)− W

( ˆ̀)
∣∣∣ ≤ r

√
ln 2g

δ

2m
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Statistical Estimation (contd.)

Theorem (A Bernstein-Type Malfare-Estimation Bound)
Suppose fair malfare W

p(·) (p ≥ 1), g groups, loss range r , and maximum variance
vmax. Then with probability at least 1− δ over sampling, we have∣∣∣ W

(`)− W

( ˆ̀)
∣∣∣ ≤ r ln 2g

δ

3m︸ ︷︷ ︸
Scale Term

+

√
vmax ln 2g

δ

2m︸ ︷︷ ︸
Variance Term

• Can show similar bounds for any concentration inequality
• Uniform bounds for a learnable family H with R a d e m a c h e r a v e r a g e sR a d e m a c h e r a v e r a g e s

sup
h∈H

∣∣∣ W

(`(h))− W

( ˆ̀(h))
∣∣∣ ≤ max

i∈1,...,g
2Rm(F ,Di)+ε ∈Θ

(
r ln g

δ

m +

√
vmax ln g

δ

m

)
• Control overfitting in machine learning

• Finite H, bounded Lipschitz families
• Bounded linear regression, finite-dimensional linear classifiers,

Generalized linear models, support vector machines, multiple kernel learning, bounded
depth decision trees, rank-constrained matrix factorization, neural networks,
(constrained) Boolean formulae, boosting methods, convex ensemble methods, learning distance metrics, . . .
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Statistical Estimation (contd.)
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Statistical Estimation (contd.)
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Statistical Estimation (contd.)
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vmax. Then with probability at least 1− δ over sampling, we have∣∣∣ W

(`)− W

( ˆ̀)
∣∣∣ ≤ r ln 2g

δ

3m︸ ︷︷ ︸
Scale Term

+

√
vmax ln 2g

δ

2m︸ ︷︷ ︸
Variance Term

• Can show similar bounds for any concentration inequality
• Uniform bounds for a learnable family H with R a d e m a c h e r a v e r a g e sR a d e m a c h e r a v e r a g e s

sup
h∈H

∣∣∣ W

(`(h))− W

( ˆ̀(h))
∣∣∣ ≤ max

i∈1,...,g
2Rm(F ,Di)+ε ∈Θ

(
r ln g

δ

m +

√
vmax ln g

δ

m

)
• Control overfitting in machine learning

• Finite H, bounded Lipschitz families
• Bounded linear regression, finite-dimensional linear classifiers,

Generalized linear models, support vector machines, multiple kernel learning, bounded
depth decision trees, rank-constrained matrix factorization, neural networks,
(constrained) Boolean formulae, boosting methods, convex ensemble methods, learning distance metrics, . . .



Third Canto: Fair Probably Approximately Correct Learning

A generic theory of fair statistical and computational learning
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Classical Statistical Learning Theory
• Consider linear classification: Hd

.
=
{
~x 7→ sgn(~w · ~x)

∣∣∣ ~w ∈ Rd
}

• Optimize risk E(x,y)∼D
[
`(y, h(x))

]
, for 0-1 loss `(y, ŷ) = 1− 1y(ŷ)

• Can this class be efficiently learned? What does that even mean?

Definition (PAC Learning)
Suppose

1 Hypothesis class H ⊆ X → Y 2 Loss function ` : Y × Y → R0+

H is PAC-learnable w.r.t. ` iff ∃ algorithm A s.t. ∀
1 distributions D over X × Y
2 additive errors ε > 0

3 failure probabilities δ ∈ (0, 1)

A can identify a hypothesis ĥ ∈ H s.t.
1 A has m(ε, δ) <∞ sample complexity
2 with probability at least 1− δ, ĥ obeys

E
(x,y)∼D

[
`(y, ĥ(x))

]
≤ argmin

h∗∈H
E

(x,y)∼D

[
`(y, h∗(x))

]
+ ε

• May also consider efficient PAC-learnable: require poly-time A



Axiomatic Fair
Learning

Cyrus Cousins

NeurIPS2021

Philosophy,
Welfare, and
Malfare
Welfare

Malfare

Axiomatic
Characterization

Estimation
and Inference
Linear Classifiers

Statistical Estimation

Fair PAC
Learning
Computational
Learnability

In Conclusion

Classical Statistical Learning Theory
• Consider linear classification: Hd

.
=
{
~x 7→ sgn(~w · ~x)

∣∣∣ ~w ∈ Rd
}

• Optimize risk E(x,y)∼D
[
`(y, h(x))

]
, for 0-1 loss `(y, ŷ) = 1− 1y(ŷ)
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E
(x,y)∼D

[
`(y, ĥ(x))
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E
(x,y)∼D

[
`(y, ĥ(x))
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Fairness and Statistical Learning Theory
Definition (Fair-PAC Learning)
Suppose

1 Hypothesis class H ⊆ X → Y 2 Loss function ` : Y × Y → R0+

H is fair PAC-learnable w.r.t. ` iff ∃ algorithm A s.t. ∀
1 distributions D1:g over (X × Y)g

2 fair malfare functions W

(·)
3 additive errors ε > 0
4 failure probabilities δ ∈ (0, 1)

A can identify a hypothesis ĥ ∈ H s.t.
1 A has m(ε, δ, g) sample complexity
2 with probability at least 1− δ, ĥ obeys

W(
E

(x,y)∼D1

[
`(y, ĥ(x))

]
, . . .

)
≤ argmin

h∗∈H

W(
E

(x,y)∼D1

[
`(y, h∗(x))

]
, . . .

)
+ ε

• Do we capture a valuable, generic notion of fair learning?
• Axiomatic social planning problem motivation

• Do practical fair PAC-learning algorithms exist?
• Can we theoretically relate PAC and fair-PAC learning?

Yes.Yes.
Why else would I ask?Why else would I ask?
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1 A has m(ε, δ, g) sample complexity
2 with probability at least 1− δ, ĥ obeys
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In Conclusion

Computational Learning Theory

• Can we construct computationally-efficient FPAC learners from PAC learners?
• Efficient means Poly( 1ε ,

1
δ , g) sample complexity

• Realizable case: reduction preserves polynomial-time complexity
• Agnostic case: Cyrus has no answer (yet)

• Are conditions for efficient PAC sufficient for efficient FPAC?
• This area looks promising!
• Efficiently Coverable Classes:

• If we can efficiently approximately enumerate H
• And our loss-function is well-behaved
• Then we can PAC or FPAC-learn in H
• Think “all separating hyperplanes of bounded dimension”

• Convex optimization:
• Suppose bounded parameter space Θ
• Assume ` ◦ hθ is convex + Lipschitz continuous in θ
• Then ε-empirical risk minimization requires polynomial time
• Same for empirical malfare minimization (this work)
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In Conclusion

Convex Optimization
Strategy: Assume class ` ◦ H is:

1 Uniformly Convergent
• Vapnik-Chervonenkis theory:

Uniform bounds over distribution
D

• Estimation error: ε(m, δ) s.t.

P

(
sup

f∈`◦H

∣∣∣E[f ]− Ê[f ]
∣∣∣ ≥ ε(m, δ)

)
≤ δ

• Sample complexity
m(ε, δ)

.
= argmin

{
m : ε(m, δ) ≤ ε

}
∈ Poly

(
1
ε ,

1
δ

)
2 Bounded

• Bounded parameter space Θ ∈ Rd

3 Lipschitz Continuous
• λ`-Lipschitz loss `, λH-Lipschitz H

4 Convex
• `(◦h(x; θ), y) is convex in θ over Θ

The Algorithm
1 Draw m( ε3 ,

δ
g ) samples (per group)

2 Define empirical malfare objective

f (θ) .
=

W

p
(
i 7→ R̂(h(·; θ); `,xi ,yi)

)
3 Iterations: n .

=
(
3 diam(Θ)λ`λH

ε

)2
4 Learning rate α

.
= diam(Θ)

λ`λH
√

n ≈
ε

3λ2
`λ

2
H

5 Shor’s projected subgradient algorithm
θ̂ ← PSG(f ,Θ,n, α)

6 Return h(·; θ̂)

W.h.p., estimation + optimization
error don’t exceed ε

Polynomial time + sample complexity

Read the Paper
Today!Today!

Now 50% Off!
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In Conclusion

Recap: Characterizing Fair PAC-Learnability

• Classical method: measure population sentiment with welfare
• This work: welfare and malfare on equal axiomatic footing

• Malfare minimization is fair extension of risk minimization

• Under some conditions, PAC = FPAC (statistical equivalence)
• FPAC =⇒ PAC (as a special case)
• Constructive PAC =⇒ FPAC reduction in realizable case
• General case is non-constructive, assumes no-free-lunch argument

• Open research question: does efficient PAC =⇒ efficient FPAC?
• Constructive reduction in realizable case
• Efficient cover enumerability sufficient for both
• Standard convex optimization assumptions sufficient for both

Conjecture: No, ∃ PAC-learnable class, where FPAC-learning is NP-hard (and P 6= NP)
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In Conclusion

Recap: Malfare, Welfare, and FPAC Learning
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Why use malfare instead of welfare?
1 “Most” machine learning tasks more naturally cast as loss minimization

• Exceptions: reward, profit, accuracy maximization
2 Fair PAC-Learning with welfare targets is tricky

• Inherent statistical instability for p ∈ [0, 1)
• Require additional assumptions, or restricted capabilities

3 Why not?
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