Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare Malfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computationa Learnability

In Conclusion

An Axiomatic Theory of Provably-Fair Welfare-Centric Machine Learning

Cyrus Cousins

Brown University Department of Computer Science

December 2021

http://cs.brown.edu/people/ccousins/

BROWN Computer Science NEURAL INFORMATION PROCESSING SYSTEMS

・ ー マ ・ 山 マ ・ 山 マ ・ 日 マ

Fairness in Machine Learning (or Lack Thereof)

• ML systems often trained on *group A*, then applied to *group B* Accuracy of Face Recognition Technologies

Neurin 520.

Welfare, an Malfare Welfare Malfare Axiomatic Characterizatio

Estimation and Inference Linear Classifiers Statistical Estimat

Fair PAC Learning

In Conclusion

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ④ < @

Fairness in Machine Learning (or Lack Thereof)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• ML systems often trained on group A, then applied to group B Accuracy of Face Recognition Technologies

- Differential performance \implies algorithmic discrimination
 - Facial recognition and policing
 - Speech recognition and accessibility
 - Many more examples

Fairness in Machine Learning (or Lack Thereof)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• ML systems often trained on group A, then applied to group B Accuracy of Face Recognition Technologies

- Differential performance \implies algorithmic discrimination
 - Facial recognition and policing
 - Speech recognition and accessibility
 - Many more examples
- What has gone wrong? Is the problem:
 - 1 *that* a machine is learning;
 - 2 from what a machine is learning; or
 - **3** how a machine is learning?

Cyrus Cousins

NeurIPS202

- Philosophy, Welfare, and Malfare ^{Welfare} Asiomatic
- Estimation and Inference Linear Classifiers Statistical Estimation
- Fair PAC Learning
- In Conclusion

• Focus on differential accuracy between protected groups

- Want group level fairness
- Learn from sample of *many individuals* drawn from *each group*

Talk Outline

Cyrus Cousins

NeurIPS202

- Philosophy, Welfare, and Malfare ^{Welfare}
- Axiomatic Characterizatio
- Estimation and Inference Linear Classifiers Statistical Estimation
- Fair PAC Learning Computations
- In Conclusion

- Focus on differential accuracy between protected groups
 - Want group level fairness
 - Learn from sample of many individuals drawn from each group
- Claim: current ML systems are trained:
 - On the wrong data (well-known)
 - In the wrong way

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Cyrus Cousins

NeurIPS202

- Philosophy, Welfare, and Malfare ^{Malfare} Aviomatic
- Characterizatio
- Estimation and Inference Linear Classifiers Statistical Estimatio
- Fair PAC Learning Computationa
- In Conclusion

• Focus on differential accuracy between protected groups

- Want group level fairness
- Learn from sample of many individuals drawn from each group

Talk Outline

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Claim: current ML systems are trained:
 - On the wrong data (well-known)
 - In the wrong way
- Optimize models sensitive to performance on protected-groups
 - Introduce malfare learning target
 - Consider all groups (possibly nonlinearly)

Cyrus Cousins

NeurIPS2021

- Philosophy, Welfare, and Malfare Malfare Axiomatic
- Characterization
- Estimation and Inference Linear Classifiers Statistical Estimatio
- Fair PAC Learning Computationa Learnability
- In Conclusion

- Focus on differential accuracy between protected groups
 - Want group level fairness
 - Learn from sample of many individuals drawn from each group
- Claim: current ML systems are trained:
 - On the wrong data (well-known)
 - In the wrong way
- Optimize models sensitive to performance on *protected-groups*
 - Introduce malfare learning target
 - Consider all groups (possibly nonlinearly)
- Theoretical treatment of learning and statistics
 - Overfitting and statistical estimation
 - Computational complexity issues in learning
 - Introduce fair-PAC-learning to theoretically treat these issues

Talk Outline

First Canto: The Philosophy of Welfare and Malfare

Fair machine learning and the social planning problem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Cyrus Cousins

NeurIPS202

- Philosophy, Welfare, and Malfare
- Welfare
- Axiomatic Characterization
- Estimation and Inference Linear Classifiers Statistical Estimation
- Fair PAC Learning
- In Conclusion

- Utility: $U(\cdot) : \mathcal{X} \to \mathbb{R}_{0+}$ Subjective measurement of positive attribute
 - Happiness, satisfaction, resource ownership

Cyrus Cousins

NeurIPS202

- Philosophy, Welfare, an Malfare
- Welfare
- Axiomatic Characterization
- Estimation and Inference Linear Classifiers Statistical Estimation
- Fair PAC Learning
- In Conclusion

- Utility: $U(\cdot) : \mathcal{X} \to \mathbb{R}_{0+}$ Subjective measurement of positive attribute
 - Happiness, satisfaction, resource ownership

• Welfare summarizes population-level utility across $\boldsymbol{x} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_g)$ "The subjective, measured objectively."

Cyrus Cousins

NeurIPS202

- Philosophy, Welfare, an Malfare
- Welfare
- Axiomatic Characterization
- Estimation and Inference Linear Classifiers Statistical Estimatio
- Fair PAC Learning Computational Learnability
- In Conclusion

- Utility: $U(\cdot) : \mathcal{X} \to \mathbb{R}_{0+}$ Subjective measurement of positive attribute
 - Happiness, satisfaction, resource ownership

• Utilitarian welfare: average utility $U(\cdot)$

$$\mathrm{W}_{\mathrm{Util}}ig(\mathrm{U}(\pmb{x}_1),\ldots,\mathrm{U}(\pmb{x}_g)ig)\doteqrac{1}{g}{\displaystyle\sum_{i=1}^g}\mathrm{U}(\pmb{x}_i)$$

(<u>())</u> (<u>))</u> (<u>))</u>

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cyrus Cousins

NeurIPS202

- Philosophy, Welfare, an Malfare
- Welfare
- Axiomatic Characterization
- Estimation and Inference Linear Classifiers Statistical Estimation
- Fair PAC Learning Computational Learnability
- In Conclusion

- Utility: $U(\cdot) : \mathcal{X} \to \mathbb{R}_{0+}$ Subjective measurement of positive attribute
 - Happiness, satisfaction, resource ownership
 - Welfare summarizes population-level utility across $\boldsymbol{x} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_g)$ "The subjective, measured objectively."
- Utilitarian welfare: average utility $U(\cdot)$

$$\mathbf{W}_{\mathrm{Util}}ig(\mathrm{U}(\pmb{x}_1),\ldots,\mathrm{U}(\pmb{x}_g)ig)\doteqrac{1}{g}{\displaystyle\sum_{i=1}^{g}}\mathrm{U}(\pmb{x}_i)$$

 (\underline{m})

• Egalitarian welfare: worst-case utility $U(\cdot)$

$$\mathrm{W}_{\mathrm{Egal}}ig(\mathrm{U}(\pmb{x}_{1}),\ldots,\mathrm{U}(\pmb{x}_{g})ig)\doteq\min_{i\in 1,\ldots,g}\mathrm{U}(\pmb{x}_{i})$$

- A fair society should have equality
- Incentivize aiding the most needy first

What is Welfare

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, an Malfare

Welfare Malfare

Axiomatic Characterizatio

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computations

In Conclusior

What is Welfare (cont.)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, an Malfare

Welfare

Axiomatic Characterizatio

Estimation and Inference Linear Classifiers Statistical Estimati

Fair PAC Learning

In Conclusio

What is Welfare (cont.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣□ めん⊙

Cyrus Cousins

What is Welfare (cont.)

NeurIPS202

Philosophy, Welfare, an Malfare

Welfare

Axiomatic Characterizatio

Estimation and Inference Linear Classifiers Statistical Estimat

Fair PAC Learning Computation

In Conclusio

Cyrus Cousins

What is Welfare (cont.)

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

NeurIPS202

Philosophy, Welfare, an Malfare

Welfare Malfare

Axiomatic Characterizatio

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computationa Learnability

In Conclusion

- Limitations
 - Nonnegativity
 - *Positive* directedness (utility is desirable)

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, an Malfare

Welfare Malfare

Axiomatic Characterizatio

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computational Learnability

In Conclusion

- Limitations
 - Nonnegativity
 - *Positive* directedness (utility is desirable)
- Which welfare function to use?
 - Analogy: worst-case vs average case bounds
 - Analogy: tail bounds vs expectation

What is Welfare (cont.)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cyrus Cousins

NeurIPS202

Philosophy Welfare, a Malfare

Welfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning

In Conclusion

Suppose vector $\boldsymbol{\ell} = (\boldsymbol{\ell}_1, \dots, \boldsymbol{\ell}_g)$ representing *utility* or *loss* across a population

The Power Mean

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, an Malfare

Welfare

Axiomatic Characterizatio

Estimation and Inference Linear Classifiers Statistical Estimati

Fair PAC Learning Computation:

n Conclusio

Suppose vector $\boldsymbol{\ell} = (\boldsymbol{\ell}_1, \dots, \boldsymbol{\ell}_g)$ representing *utility* or *loss* across a population

$$p \in \mathbb{R} \setminus \{0\}$$

1

$$\mathbf{M}_p(\boldsymbol{\ell}) \doteq \left\{ \right.$$

$$\subset \mathbb{D} \setminus \{0\}$$

$$\mathbb{R}\setminus\{0\}=\sqrt[p]{rac{1}{n}}\sum_{i=1}$$

 $\boldsymbol{\ell}_i^p$

The Power Mean

Welfare

Suppose vector $\boldsymbol{\ell} = (\boldsymbol{\ell}_1, \dots, \boldsymbol{\ell}_q)$ representing *utility* or *loss* across a population

,q

$$\mathbf{M}_{p}(\boldsymbol{\ell}) \doteq \begin{cases} p \in \mathbb{R} \setminus \{0\} & \sqrt[p]{\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{\ell}_{i}^{p}} \\ p = -\infty & \min_{i \in 1, \dots, g} \boldsymbol{\ell}_{i} \\ p = 0 & \sqrt[n]{\prod_{i=1}^{n} \boldsymbol{\ell}_{i}} \\ p = \infty & \max_{i \in 1, \dots, g} \boldsymbol{\ell}_{i} \end{cases}$$

The Power Mean

The Power Mean

Cyrus Cousins

Welfare

Suppose vector $\boldsymbol{\ell} = (\boldsymbol{\ell}_1, \dots, \boldsymbol{\ell}_g)$ representing *utility* or *loss* across a population

3 $\mathbf{M}_{p}(\boldsymbol{\ell}) \doteq \begin{cases} p \in \mathbb{R} \setminus \{0\} & \sqrt[p]{\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{\ell}_{i}^{p}} \\ p = -\infty & \min_{i \in 1, \dots, g} \boldsymbol{\ell}_{i} \\ p = 0 & \sqrt[n]{\prod_{i=1}^{n} \boldsymbol{\ell}_{i}} \\ p = \infty & \max_{i \in 1, \dots, g} \boldsymbol{\ell}_{i} \end{cases}$ 2 $M_p(1,2,3)$ $M_{\infty}(1,2,3)$ 1 -20-100 10 20p

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

timation d Inference lear Classifiers atistical Estimatic ir PAC

Computational Learnability

In Conclusio

Cyrus Cousins

Welfare

- Smooth interpolation between min, arithmetic mean, and max
 - Other special cases: geometric, harmonic, and quadratic means
- Monotonic in *p*: *interpolate between* utilitarian and egalitarian

Cyrus Cousins

NeurIPS202

- Philosophy, Welfare, and Malfare
- Welfare
- Axiomatic Characterization
- Estimation and Inference Linear Classifiers Statistical Estimatio
- Fair PAC Learning
- In Conclusion

• Why do we care about cardinal welfare?

- Welfare $W(\cdot)$ encodes an *ideal notion* of *societal wellbeing* (fairness)
- Utilitarian versus Egalitarian

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Axiomatic Fair Learning

Cyrus Cousins

NeurIPS2021

- Philosophy, Welfare, and Malfare
- Welfare
- Axiomatic Characterization
- Estimation and Inference Linear Classifiers Statistical Estimation
- Fair PAC Learning
- In Conclusion

• Why do we care about cardinal welfare?

- Welfare $W(\cdot)$ encodes an *ideal notion* of *societal wellbeing* (fairness)
- Utilitarian versus Egalitarian
- The social planning problem
 - Select allocation of goods and services to maximize welfare
 - Fair ML is learning an optimal allocation from data?
 - Learn policy to maximize welfare of per-group utilities

Cyrus Cousins

NeurIPS2021

- Philosophy, Welfare, and Malfare
- Welfare
- Axiomatic Characterizatio
- Estimation and Inference Linear Classifiers Statistical Estimation
- Fair PAC Learning Computation:
- In Conclusion

- Why do we care about cardinal welfare?
 - Welfare $W(\cdot)$ encodes an *ideal notion* of *societal wellbeing* (fairness)
 - Utilitarian versus Egalitarian
- The social planning problem
 - Select allocation of goods and services to maximize welfare
 - Fair ML is learning an optimal allocation from data?
 - Learn policy to maximize welfare of per-group utilities

Is it really that easy?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Axiomatic Fair Learning

Cyrus Cousins

NeurIPS2021

- Philosophy, Welfare, and Malfare
- Welfare
- Axiomatic Characterization
- Estimation and Inference Linear Classifiers Statistical Estimation
- Fair PAC Learning
- In Conclusior

• Why do we care about cardinal welfare?

- Welfare $W(\cdot)$ encodes an ideal notion of societal wellbeing (fairness)
- Utilitarian versus Egalitarian
- The social planning problem
 - Select allocation of goods and services to maximize welfare
 - Fair ML is learning an optimal allocation from data?
 - Learn *policy* to maximize *welfare* of *per-group* utilities

Is it really that easy?

What if we want to minimize a loss function?

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare

Malfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimatio

Fair PAC Learning

In Conclusion

• Standard: maximize a welfare measure of societal wellbeing $W(\cdot)$

- This work: minimize a malfare measure of societal suffering $M(\cdot)$
 - Generically termed aggregator functions $\mathrm{M}(\cdot)$

Introducing Malfare

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare

Malfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning

In Conclusior

Introducing Malfare

- Standard: maximize a welfare measure of societal wellbeing $W(\cdot)$
- This work: minimize a malfare measure of societal suffering $\Lambda(\cdot)$
 - Generically termed aggregator functions $M(\cdot)$
- Is this really a new idea?
 - Everybody knows $\forall i : \operatorname{argmax}_{h \in \mathcal{H}} \ell_i(h) = \operatorname{argmin}_{h \in \mathcal{H}} \ell_i(h)$
 - But we don't have $\underset{h \in \mathcal{H}}{\operatorname{argmax}} W_p(-\ell(h)) = \underset{h \in \mathcal{H}}{\operatorname{argmin}} M_p(\ell(h))$
 - Welfare is a multivariate optimality concept
 - Intuition from univariate optimization breaks down

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare

Malfare

Axiomatic Characterizatior

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computation: Learnability

In Conclusior

Introducing Malfare

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Standard: maximize a welfare measure of societal wellbeing $W(\cdot)$
- This work: minimize a malfare measure of societal suffering $\mathrm{M}(\cdot)$
 - Generically termed aggregator functions $M(\cdot)$
- Is this really a new idea?
 - Everybody knows $\forall i : \operatorname{argmax}_{h \in \mathcal{H}} \ell_i(h) = \operatorname{argmin}_{h \in \mathcal{H}} \ell_i(h)$
 - But we don't have $\underset{h \in \mathcal{H}}{\operatorname{argmin}} \operatorname{W}_p(-\ell(h)) = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \operatorname{M}_p(\ell(h))$
 - Welfare is a *multivariate optimality concept*
 - Intuition from univariate optimization breaks down
- We shall see equal axiomatic justification for welfare and malfare

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare

Malfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computationa Learnability

In Conclusior

• Standard: maximize a welfare measure of societal wellbeing $W(\cdot)$

- This work: minimize a malfare measure of societal suffering $\Lambda(\cdot)$
 - Generically termed aggregator functions $\mathrm{M}(\cdot)$
- Is this really a new idea?
 - Everybody knows $\forall i : \operatorname{argmax}_{h \in \mathcal{H}} \ell_i(h) = \operatorname{argmin}_{h \in \mathcal{H}} \ell_i(h)$
 - But we don't have $\underset{h \in \mathcal{H}}{\operatorname{argmax}} W_p(-\ell(h)) = \underset{h \in \mathcal{H}}{\operatorname{argmin}} M_p(\ell(h))$
 - Welfare is a multivariate optimality concept
 - Intuition from univariate optimization breaks down
- We shall see equal axiomatic justification for welfare and malfare

	0	<u>@</u>			
Utility	5	4	3	2	1
Loss	1	2	3	4	5

- *Malfare* extends the concept of *welfare* to *undesirable quantities* (disutility)
- Direct correspondence only for $p\in\{-\infty,1,\infty\}$

Introducing Malfare

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare

Malfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computationa Learnability

In Conclusior

• Standard: maximize a welfare measure of societal wellbeing $W(\cdot)$

- This work: minimize a malfare measure of societal suffering $M(\cdot)$
 - Generically termed aggregator functions $\mathrm{M}(\cdot)$
- Is this really a new idea?
 - Everybody knows $\forall i : \operatorname{argmax}_{h \in \mathcal{H}} \ell_i(h) = \operatorname{argmin}_{h \in \mathcal{H}} \ell_i(h)$
 - But we don't have $\underset{h \in \mathcal{H}}{\operatorname{argmin}} \operatorname{W}_p(-\ell(h)) = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \operatorname{M}_p(\ell(h))$
 - Welfare is a multivariate optimality concept
 - Intuition from univariate optimization breaks down
- We shall see equal axiomatic justification for welfare and malfare

	00	<u>@</u>	<u>(m)</u>		
Utility	5	4	3	2	1
Loss	1	2	3	4	5

- *Malfare* extends the concept of *welfare* to *undesirable quantities* (disutility)
- Direct correspondence only for $p \in \{-\infty, 1, \infty\}$

Introducing Malfare

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, ar Malfare

Malfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning

In Conclusion

Fair Machine Learning with Malfare Minimization

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- $\bullet\,$ Standard machine learning over instance distribution ${\cal D}\,$
 - Machine learning tasks often cast as risk minimization w.r.t. loss function ℓ

$$h^* \doteq \underset{h \in \mathcal{H}}{\operatorname{argmin}} \mathbb{E}_{(x,y) \sim \mathcal{D}}[\ell(h(x), y)]$$

Cyrus Cousins

NeurIPS202

Philosophy Welfare, ar Malfare

Malfare

Axiomatic Characterizatio

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computationa Learnability

In Conclusion

Fair Machine Learning with Malfare Minimization

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- \bullet Standard machine learning over instance distribution ${\cal D}$
 - Machine learning tasks often cast as risk minimization w.r.t. loss function ℓ

 $h^* \doteq \underset{h \in \mathcal{H}}{\operatorname{argmin}} \underset{(x,y) \sim \mathcal{D}}{\mathbb{E}} [\ell(h(x), y)]$

- In fair machine learning, different groups have different needs and preferences
 - Need to consider multiple distributions $\mathcal{D}_1, \dots, \mathcal{D}_g$ over multiple groups
 - Analogously cast learning tasks as malfare minimization

$$h^* \doteq \operatorname*{argmin}_{h \in \mathcal{H}} \operatorname{M} \left(\underset{(x,y) \sim \mathcal{D}_1}{\mathbb{E}} \left[\ell(h(x), y) \right], \ldots, \underset{(x,y) \sim \mathcal{D}_g}{\mathbb{E}} \left[\ell(h(x), y) \right] \right)$$

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, ar Malfare

Malfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computational Learnability

In Conclusion

Fair Machine Learning with Malfare Minimization

- \bullet Standard machine learning over instance distribution ${\cal D}$
 - Machine learning tasks often cast as risk minimization w.r.t. loss function ℓ

 $h^* \doteq \underset{h \in \mathcal{H}}{\operatorname{argmin}} \underset{(x,y) \sim \mathcal{D}}{\mathbb{E}} [\ell(h(x), y)]$

- In fair machine learning, different groups have different needs and preferences
 - Need to consider multiple distributions $\mathcal{D}_1, \ldots, \mathcal{D}_g$ over multiple groups
 - Analogously cast learning tasks as malfare minimization

$$h^* \doteq \operatorname*{argmin}_{h \in \mathcal{H}} \mathcal{M} \left(\underset{(x,y) \sim \mathcal{D}_1}{\mathbb{E}} \left[\ell(h(x), y) \right], \ldots, \underset{(x,y) \sim \mathcal{D}_g}{\mathbb{E}} \left[\ell(h(x), y) \right] \right)$$

Contrast with welfare maximization:
Meed to define a *utility function* U(·)

$$h^* \doteq \operatorname*{argmax}_{h \in \mathcal{H}} W\left(\underset{(x,y) \sim \mathcal{D}_1}{\mathbb{E}} \left[U(h(x), y) \right], \dots, \underset{(x,y) \sim \mathcal{D}_g}{\mathbb{E}} \left[U(h(x), y) \right] \right)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, an Malfare

Malfare

Axiomatic Characterizatio

Estimation and Inference Linear Classifiers Statistical Estimatic

Fair PAC Learning Computational Learnability

In Conclusion

Fair Machine Learning with Malfare Minimization

- \bullet Standard machine learning over instance distribution ${\cal D}$
 - \bullet Machine learning tasks often cast as risk minimization w.r.t. loss function ℓ

 $h^* \doteq \underset{h \in \mathcal{H}}{\operatorname{argmin}} \underset{(x,y) \sim \mathcal{D}}{\mathbb{E}} [\ell(h(x), y)]$

- In fair machine learning, different groups have different needs and preferences
 - Need to consider multiple distributions $\mathcal{D}_1, \dots, \mathcal{D}_g$ over multiple groups
 - Analogously cast learning tasks as malfare minimization

$$h^* \doteq \operatorname*{argmin}_{h \in \mathcal{H}} \mathcal{M} \left(\underset{(x,y) \sim \mathcal{D}_1}{\mathbb{E}} \left[\ell(h(x), y) \right], \ldots, \underset{(x,y) \sim \mathcal{D}_g}{\mathbb{E}} \left[\ell(h(x), y) \right] \right)$$

Contrast with welfare maximization:
▲ Need to define a *utility function* U(·)

$$h^* \doteq \operatorname*{argmax}_{h \in \mathcal{H}} W\left(\underset{(x,y) \sim \mathcal{D}_1}{\mathbb{E}} \left[U(h(x), y) \right], \dots, \underset{(x,y) \sim \mathcal{D}_g}{\mathbb{E}} \left[U(h(x), y) \right] \right)$$

• Select \hat{h} to optimize empirical *risk / malfare / welfare* estimates
Axioms of Cardinal Welfare

Cyrus Cousins

NeurIPS202

Philosophy Welfare, ar Malfare

Malfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning

In Conclusior

$\textbf{1} \text{ Strict Monotonicity: } \forall \boldsymbol{\varepsilon} \succeq 0 \text{ s.t. } \boldsymbol{\varepsilon} \neq \boldsymbol{0} \text{: } \mathrm{M}(\boldsymbol{\ell}) < \mathrm{M}(\boldsymbol{\ell} + \boldsymbol{\varepsilon})$

• Adding utility never harms welfare

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Axioms of Cardinal Welfare

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare

Malfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimatio

Fair PAC Learning

In Conclusion

- $\textbf{I} \text{ Strict Monotonicity: } \forall \boldsymbol{\varepsilon} \succeq 0 \text{ s.t. } \boldsymbol{\varepsilon} \neq \boldsymbol{0} \text{: } \mathrm{M}(\boldsymbol{\ell}) < \mathrm{M}(\boldsymbol{\ell} + \boldsymbol{\varepsilon})$
 - Adding utility never harms welfare
- **2** Symmetry: \forall permutations π : $M(\boldsymbol{\ell}) = M(\pi(\boldsymbol{\ell}))$
 - No exceptionalism; welfare is identity blind
 - Inherent tenet of fairness and equality

Axioms of Cardinal Welfare

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare

Malfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimatio

Fair PAC Learning Computation

In Conclusior

- $\textbf{I} \text{ Strict Monotonicity: } \forall \boldsymbol{\varepsilon} \succeq 0 \text{ s.t. } \boldsymbol{\varepsilon} \neq \boldsymbol{0} \text{: } \mathrm{M}(\boldsymbol{\ell}) < \mathrm{M}(\boldsymbol{\ell} + \boldsymbol{\varepsilon})$
 - Adding utility never harms welfare
- **2** Symmetry: \forall permutations π : $M(\boldsymbol{\ell}) = M(\pi(\boldsymbol{\ell}))$
 - No exceptionalism; welfare is identity blind
 - Inherent tenet of fairness and equality

 $\textcircled{O} \text{ Continuity: } \forall \boldsymbol{\ell}: \{ \boldsymbol{\ell}' \mid M(\boldsymbol{\ell}') \leq M(\boldsymbol{\ell}) \} \text{ and } \{ \boldsymbol{\ell}' \mid M(\boldsymbol{\ell}') \geq M(\boldsymbol{\ell}) \} \text{ are } \textit{closed sets}$

Axioms of Cardinal Welfare

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare

Malfare

- Axiomatic Characterizatio
- Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning

- $\textbf{0} \text{ Strict Monotonicity: } \forall \boldsymbol{\varepsilon} \succeq 0 \text{ s.t. } \boldsymbol{\varepsilon} \neq \boldsymbol{0} \text{: } \mathrm{M}(\boldsymbol{\ell}) < \mathrm{M}(\boldsymbol{\ell} + \boldsymbol{\varepsilon})$
 - Adding utility never harms welfare
- **2** Symmetry: \forall permutations π : $M(\ell) = M(\pi(\ell))$
 - No exceptionalism; welfare is identity blind
 - Inherent tenet of *fairness* and *equality*
- $\textbf{S} \mbox{ Continuity: } \forall \pmb{\ell}: \{ \pmb{\ell}' \mid M(\pmb{\ell}') \leq M(\pmb{\ell}) \} \mbox{ and } \{ \pmb{\ell}' \mid M(\pmb{\ell}') \geq M(\pmb{\ell}) \} \mbox{ are $closed sets$}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- **4** Independence of Unconcerned Agents (IUA):
 - $\forall a, b \in \mathbb{R}_+ : \ \mathrm{M}(\boldsymbol{\ell}, a) \leq \mathrm{M}(\boldsymbol{\ell}', a) \Leftrightarrow \mathrm{M}(\boldsymbol{\ell}, b) \leq \mathrm{M}(\boldsymbol{\ell}', b)$
 - Compartmentalization and analysis of *subgroups*

Cyrus Cousin

NeurIPS202

Philosophy, Welfare, and Malfare

Malfare

- Axiomatic Characterizatio
- Estimation and Inference Linear Classifiers Statistical Estimation
- Fair PAC Learning Computational Learnability

In Conclusion

Axioms of Cardinal Welfare

- **1** Strict Monotonicity: $\forall \boldsymbol{\varepsilon} \succeq 0 \text{ s.t. } \boldsymbol{\varepsilon} \neq \mathbf{0}: M(\boldsymbol{\ell}) < M(\boldsymbol{\ell} + \boldsymbol{\varepsilon})$
 - Adding utility never harms welfare
- **2** Symmetry: \forall permutations π : $M(\boldsymbol{\ell}) = M(\pi(\boldsymbol{\ell}))$
 - No exceptionalism; welfare is identity blind
 - Inherent tenet of fairness and equality
- **4** Independence of Unconcerned Agents (IUA):
 - $\forall a, b \in \mathbb{R}_+: \ \mathrm{M}(\boldsymbol{\ell}, a) \leq \mathrm{M}(\boldsymbol{\ell}', a) \Leftrightarrow \mathrm{M}(\boldsymbol{\ell}, b) \leq \mathrm{M}(\boldsymbol{\ell}', b)$
 - Compartmentalization and analysis of *subgroups*
- **Independence of Common Scale (ICS):**
 - $\forall \alpha \in \mathbb{R}_+ : \ \mathrm{M}(\boldsymbol{\ell}) \leq \mathrm{M}(\boldsymbol{\ell}') \implies \mathrm{M}(\alpha \boldsymbol{\ell}) \leq \mathrm{M}(\alpha \boldsymbol{\ell}')$
 - Relative value *invariant* under (absolute) unit conversion: \$ versus P

Cyrus Cousin

NeurIPS202

Philosophy, Welfare, and Malfare

Malfare

Axiomatic Characterizatio

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computational Learnability

In Conclusion

Axioms of Cardinal Welfare

э.

- $\textbf{1} \text{ Strict Monotonicity: } \forall \boldsymbol{\varepsilon} \succeq 0 \text{ s.t. } \boldsymbol{\varepsilon} \neq \boldsymbol{0} \text{: } \mathrm{M}(\boldsymbol{\ell}) < \mathrm{M}(\boldsymbol{\ell} + \boldsymbol{\varepsilon})$
 - Adding utility never harms welfare
- **2** Symmetry: \forall permutations π : $M(\boldsymbol{\ell}) = M(\pi(\boldsymbol{\ell}))$
 - No exceptionalism; welfare is identity blind
 - Inherent tenet of *fairness* and *equality*
- $\textbf{S} \mbox{ Continuity: } \forall \pmb{\ell} : \{ \pmb{\ell}' \mid M(\pmb{\ell}') \leq M(\pmb{\ell}) \} \mbox{ and } \{ \pmb{\ell}' \mid M(\pmb{\ell}') \geq M(\pmb{\ell}) \} \mbox{ are closed sets }$
- **4** Independence of Unconcerned Agents (IUA):
 - $\forall a, b \in \mathbb{R}_+: \ \mathrm{M}(\boldsymbol{\ell}, a) \leq \mathrm{M}(\boldsymbol{\ell}', a) \Leftrightarrow \mathrm{M}(\boldsymbol{\ell}, b) \leq \mathrm{M}(\boldsymbol{\ell}', b)$
 - Compartmentalization and analysis of *subgroups*
- **Independence of Common Scale (ICS):**
 - $\forall \alpha \in \mathbb{R}_+ : \ \mathrm{M}(\boldsymbol{\ell}) \leq \mathrm{M}(\boldsymbol{\ell}') \implies \mathrm{M}(\alpha \boldsymbol{\ell}) \leq \mathrm{M}(\alpha \boldsymbol{\ell}')$
 - Relative value *invariant* under (absolute) unit conversion: \$ versus P

Theorem (Debreu-Gorman (1959))

For some strictly increasing F, $p \in \mathbb{R}$, all welfare functions satisfying 1-5 take form

$$\mathbf{M}(\boldsymbol{\ell}) = F\left(\operatorname{sgn}(p)\sum_{i=1}^{g}\boldsymbol{\ell}_{i}^{p}\right) \text{ or } \mathbf{M}(\boldsymbol{\ell}) = F\left(\prod_{i=1}^{g}\boldsymbol{\ell}_{i}\right)$$

Can be *non-Lipschitz*, arbitrarily hard to *estimate* from *sample*

Extended Axioms of Cardinal Welfare

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cyrus Cousins

NeurIPS202

Philosophy Welfare, an Malfare

Welfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning

In Conclusion

- $\textbf{0} \text{ Strict Monotonicity: } \forall \boldsymbol{\varepsilon} \succeq 0 \text{ s.t. } \boldsymbol{\varepsilon} \neq \boldsymbol{0} \text{: } \mathrm{M}(\boldsymbol{\ell}) < \mathrm{M}(\boldsymbol{\ell} + \boldsymbol{\varepsilon})$
- **2** Symmetry: \forall permutations π : $M(\ell) = M(\pi(\ell))$
- $\textbf{S} \text{ Continuity: } \forall \boldsymbol{\ell} : \{ \boldsymbol{\ell}' \mid M(\boldsymbol{\ell}') \leq M(\boldsymbol{\ell}) \} \text{ and } \{ \boldsymbol{\ell}' \mid M(\boldsymbol{\ell}') \geq M(\boldsymbol{\ell}) \} \text{ are } \textit{closed sets}$
- $\textbf{ IUA: } \forall a, b \in \mathbb{R}_+ : \ \mathrm{M}(\boldsymbol{\ell}, a) \leq \mathrm{M}(\boldsymbol{\ell}', a) \Leftrightarrow \mathrm{M}(\boldsymbol{\ell}, b) \leq \mathrm{M}(\boldsymbol{\ell}', b)$
- **5** ICS: $\forall \alpha \in \mathbb{R}_+$: $M(\ell) \le M(\ell') \implies M(\alpha \ell) \le M(\alpha \ell')$

Extended Axioms of Cardinal Welfare

Cyrus Cousins

NeurIPS202

Philosophy Welfare, ar Malfare

Welfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computation

In Conclusior

- $\textbf{0} \text{ Strict Monotonicity: } \forall \boldsymbol{\varepsilon} \succeq 0 \text{ s.t. } \boldsymbol{\varepsilon} \neq \boldsymbol{0} \text{: } \mathrm{M}(\boldsymbol{\ell}) < \mathrm{M}(\boldsymbol{\ell} + \boldsymbol{\varepsilon})$
- **2** Symmetry: \forall permutations π : $M(\ell) = M(\pi(\ell))$
- $\textcircled{O} \text{ Continuity: } \forall \boldsymbol{\ell}: \{ \boldsymbol{\ell}' \mid M(\boldsymbol{\ell}') \leq M(\boldsymbol{\ell}) \} \text{ and } \{ \boldsymbol{\ell}' \mid M(\boldsymbol{\ell}') \geq M(\boldsymbol{\ell}) \} \text{ are } \textit{closed sets}$
- **5** ICS: $\forall \alpha \in \mathbb{R}_+$: $M(\ell) \leq M(\ell') \implies M(\alpha \ell) \leq M(\alpha \ell')$
- **6** Multiplicative Linearity: $M(\alpha \ell) = \alpha M(\ell)$;
 - Implies ICS

• Units of $M(\cdot)$ match units of $\boldsymbol{\ell}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, ar Malfare

Welfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimati

Fair PAC Learning Computationa Learnability

In Conclusion

Extended Axioms of Cardinal Welfare

- $\textbf{I} \text{ Strict Monotonicity: } \forall \boldsymbol{\varepsilon} \succeq 0 \text{ s.t. } \boldsymbol{\varepsilon} \neq \boldsymbol{0} \text{: } \mathrm{M}(\boldsymbol{\ell}) < \mathrm{M}(\boldsymbol{\ell} + \boldsymbol{\varepsilon})$
- **2** Symmetry: \forall permutations π : $M(\ell) = M(\pi(\ell))$
- $\textcircled{O} \text{ Continuity: } \forall \boldsymbol{\ell}: \{ \boldsymbol{\ell}' \mid M(\boldsymbol{\ell}') \leq M(\boldsymbol{\ell}) \} \text{ and } \{ \boldsymbol{\ell}' \mid M(\boldsymbol{\ell}') \geq M(\boldsymbol{\ell}) \} \text{ are } \textit{closed sets}$
- **5** ICS: $\forall \alpha \in \mathbb{R}_+$: $M(\ell) \le M(\ell') \implies M(\alpha \ell) \le M(\alpha \ell')$
- **6** Multiplicative Linearity: $M(\alpha \ell) = \alpha M(\ell)$;
 - Implies ICS
- 0 Unit Scale: M(1) = 1

- Units of $M(\cdot)$ match units of $\boldsymbol{\ell}$

- Scale of M matches units of $\boldsymbol{\ell}$
- Absolute comparison: "My income is x% of average / maximum / minimum"

Cyrus Cousins

NeurIPS202

Philosophy Welfare, ar Malfare

Welfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimati

Fair PAC Learning ^{Computationa} Learnability

In Conclusion

Extended Axioms of Cardinal Welfare

• Units of $M(\cdot)$ match units of ℓ

- $\textbf{0} \text{ Strict Monotonicity: } \forall \boldsymbol{\varepsilon} \succeq 0 \text{ s.t. } \boldsymbol{\varepsilon} \neq \boldsymbol{0} \text{: } \mathrm{M}(\boldsymbol{\ell}) < \mathrm{M}(\boldsymbol{\ell} + \boldsymbol{\varepsilon})$
- **2** Symmetry: \forall permutations π : $M(\ell) = M(\pi(\ell))$

- **5** ICS: $\forall \alpha \in \mathbb{R}_+$: $M(\ell) \le M(\ell') \implies M(\alpha \ell) \le M(\alpha \ell')$
- **6** Multiplicative Linearity: $M(\alpha \ell) = \alpha M(\ell)$;
 - Implies ICS
- **7** Unit Scale: M(1) = 1
 - Scale of M matches units of $\boldsymbol{\ell}$
 - Absolute comparison: "My income is x% of average / maximum / minimum"

Theorem (Axiomatic Characterization of Welfare and Malfare)

For any aggregator function $M(\cdot)$ satisfying 1-7, $\exists p \in \mathbb{R} \text{ s.t.}$

$$\mathrm{M}(\boldsymbol{\ell}) = \mathrm{M}_p(\boldsymbol{\ell}) = \sqrt[p]{rac{1}{g}\sum_{i=1}^g \boldsymbol{\ell}_i^p} \ \ \text{or} \ \ \mathrm{M}(\boldsymbol{\ell}) = \sqrt[g]{\prod_{i=1}^g \boldsymbol{\ell}_i} \ ,$$

which are Lipschitz-continuous in ℓ for $p \in (-\infty, 0) \cup [1, \infty)$.

・ロト・西・・田・・田・ 日・ シック

Transfer Axioms of Cardinal Welfare

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cyrus Cousins

NeurIPS202

Philosophy Welfare, ar Malfare

Welfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimat

Fair PAC Learning Computationa

In Conclusion

- $\textbf{1} \text{ Strict Monotonicity: } \forall \boldsymbol{\varepsilon} \succeq 0 \text{ s.t. } \boldsymbol{\varepsilon} \neq \boldsymbol{0} \text{: } \mathrm{M}(\boldsymbol{\ell}) < \mathrm{M}(\boldsymbol{\ell} + \boldsymbol{\varepsilon})$
- **2** Symmetry: \forall permutations π : $M(\ell) = M(\pi(\ell))$
- $\textcircled{O} \text{ Continuity: } \forall \boldsymbol{\ell}: \{ \boldsymbol{\ell}' \mid M(\boldsymbol{\ell}') \leq M(\boldsymbol{\ell}) \} \text{ and } \{ \boldsymbol{\ell}' \mid M(\boldsymbol{\ell}') \geq M(\boldsymbol{\ell}) \} \text{ are } \textit{closed sets}$
- $\textbf{ IUA: } \forall a, b \in \mathbb{R}_+: \ \mathrm{M}(\boldsymbol{\ell}, a) \leq \mathrm{M}(\boldsymbol{\ell}', a) \Leftrightarrow \mathrm{M}(\boldsymbol{\ell}, b) \leq \mathrm{M}(\boldsymbol{\ell}', b)$
- **5** ICS: $\forall \alpha \in \mathbb{R}_+ : M(\ell) \le M(\ell') \implies M(\alpha \ell) \le M(\alpha \ell')$
- **6** Multiplicative Linearity: $M(\alpha \ell) = \alpha M(\ell)$
- **7** Unit Scale: M(1) = 1

Transfer Axioms of Cardinal Welfare

Cyrus Cousins

NeurIPS202

Philosophy Welfare, ar Malfare

Welfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimat

Fair PAC Learning Computationa Learnability

In Conclusion

- $\textbf{1} \text{ Strict Monotonicity: } \forall \boldsymbol{\varepsilon} \succeq 0 \text{ s.t. } \boldsymbol{\varepsilon} \neq \textbf{0} \text{: } \mathrm{M}(\boldsymbol{\ell}) < \mathrm{M}(\boldsymbol{\ell} + \boldsymbol{\varepsilon})$
- **2** Symmetry: \forall permutations π : $M(\ell) = M(\pi(\ell))$
- $\textbf{ IUA: } \forall a, b \in \mathbb{R}_+: \ \mathrm{M}(\boldsymbol{\ell}, a) \leq \mathrm{M}(\boldsymbol{\ell}', a) \Leftrightarrow \mathrm{M}(\boldsymbol{\ell}, b) \leq \mathrm{M}(\boldsymbol{\ell}', b)$
- **5** ICS: $\forall \alpha \in \mathbb{R}_+$: $M(\ell) \le M(\ell') \implies M(\alpha \ell) \le M(\alpha \ell')$
- **6** Multiplicative Linearity: $M(\alpha \ell) = \alpha M(\ell)$
- **7** Unit Scale: M(1) = 1

All apply equally well to welfare and malfare

Transfer Axioms of Cardinal Welfare

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cyrus Cousins

NeurIPS202

Philosophy Welfare, ar Malfare

Welfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimati

Fair PAC Learning Computational Learnability

In Conclusion

- $\textbf{1} \text{ Strict Monotonicity: } \forall \boldsymbol{\varepsilon} \succeq 0 \text{ s.t. } \boldsymbol{\varepsilon} \neq \boldsymbol{0} \text{: } \mathrm{M}(\boldsymbol{\ell}) < \mathrm{M}(\boldsymbol{\ell} + \boldsymbol{\varepsilon})$
- **2** Symmetry: \forall permutations π : $M(\ell) = M(\pi(\ell))$
- $\textbf{ IUA: } \forall a, b \in \mathbb{R}_+: \ \mathrm{M}(\boldsymbol{\ell}, a) \leq \mathrm{M}(\boldsymbol{\ell}', a) \Leftrightarrow \mathrm{M}(\boldsymbol{\ell}, b) \leq \mathrm{M}(\boldsymbol{\ell}', b)$
- **5** ICS: $\forall \alpha \in \mathbb{R}_+ : M(\ell) \le M(\ell') \implies M(\alpha \ell) \le M(\alpha \ell')$
- **6** Multiplicative Linearity: $M(\alpha \ell) = \alpha M(\ell)$
- **7** Unit Scale: M(1) = 1

 $\bigwedge_{i \in 1, \dots, g} \left(\left| \boldsymbol{\ell}'_i - \boldsymbol{\mu} \right| \ge \left| \boldsymbol{\ell}_i - \boldsymbol{\mu} \right| \right) \implies W(\boldsymbol{\ell}') \le W(\boldsymbol{\ell})$

Transfer Axioms of Cardinal Welfare

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cyrus Cousins

NeurIPS202

Philosophy Welfare, ar Malfare

Welfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimati

Fair PAC Learning Computational Learnability

In Conclusion

- $\textbf{1} \text{ Strict Monotonicity: } \forall \boldsymbol{\varepsilon} \succeq 0 \text{ s.t. } \boldsymbol{\varepsilon} \neq \boldsymbol{0} \text{: } \mathrm{M}(\boldsymbol{\ell}) < \mathrm{M}(\boldsymbol{\ell} + \boldsymbol{\varepsilon})$
- **2** Symmetry: \forall permutations π : $M(\ell) = M(\pi(\ell))$

- **5** ICS: $\forall \alpha \in \mathbb{R}_+ : M(\ell) \le M(\ell') \implies M(\alpha \ell) \le M(\alpha \ell')$
- **6** Multiplicative Linearity: $M(\alpha \ell) = \alpha M(\ell)$
- **7** Unit Scale: M(1) = 1

③ Pigou-Dalton Principle: Suppose ℓ, ℓ' s.t. $M_1(\ell) = M_1(\ell') = \mu$. Then $\bigwedge_{i \in 1, \dots, g} (|\ell'_i - \mu| \ge |\ell_i - \mu|) \implies W(\ell') \le W(\ell)$

(9) Anti-Pigou-Dalton Principle: Suppose as in (8). Then require *inverse* $\bigwedge_{i \in 1, ..., g} (|\ell'_i - \mu| \ge |\ell_i - \mu|) \implies M(\ell') \ge M(\ell)$

Cyrus Cousins

NeurIPS202

Philosophy Welfare, ar Malfare

Welfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimati

Fair PAC Learning Computational Learnability

In Conclusion

Transfer Axioms of Cardinal Welfare

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- $\textbf{0} \text{ Strict Monotonicity: } \forall \boldsymbol{\varepsilon} \succeq 0 \text{ s.t. } \boldsymbol{\varepsilon} \neq \boldsymbol{0} \text{: } \mathrm{M}(\boldsymbol{\ell}) < \mathrm{M}(\boldsymbol{\ell} + \boldsymbol{\varepsilon})$
- **2** Symmetry: \forall permutations π : $M(\ell) = M(\pi(\ell))$

- **5** ICS: $\forall \alpha \in \mathbb{R}_+ : M(\ell) \le M(\ell') \implies M(\alpha \ell) \le M(\alpha \ell')$
- **6** Multiplicative Linearity: $M(\alpha \ell) = \alpha M(\ell)$
- **7** Unit Scale: M(1) = 1

③ Pigou-Dalton Principle: Suppose ℓ, ℓ' s.t. $M_1(\ell) = M_1(\ell') = \mu$. Then $\bigwedge_{i \in 1, \dots, g} (|\ell'_i - \mu| \ge |\ell_i - \mu|) \implies W(\ell') \le W(\ell)$

9 Anti-Pigou-Dalton Principle: Suppose as in (8). Then require *inverse*

$$\bigwedge_{i \in 1, \dots, q} \left(\left| \ell'_i - \mu \right| \ge \left| \ell_i - \mu \right| \right) \implies \mathcal{M}(\ell) \ge \mathcal{M}(\ell)$$

Welfare	w	$\leq w$
Malfare	m	$\geq m$

Properties of Welfare and Malfare

(ロト (個) (目) (目) (目) のへで

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, an Malfare

Welfare

Malfare

Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimati

Fair PAC Learning ^{Computational} Learnability

In Conclusion

Properties of Welfare and Malfare

In Conclusion

Axiomatic Characterization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Properties of Welfare and Malfare

NeurIPS202

Philosophy, Welfare, an Malfare

Welfare

Axiomatic

Characterization

Estimation and Inference Linear Classifiers Statistical Estimati

Fair PAC Learning ^{Computational} Learnability

In Conclusion

ふりん 前 (中国)(中国)(中国)(日)

Properties of Welfare and Malfare

Properties of Welfare and Malfare

Second Canto: Estimation, Inference, and Fair Machine Learning

The Statistics of Fair Machine Learning as Malfare Minimization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Learning Linear Classifiers

Cyrus Cousins

NeurIPS202

- Philosophy, Welfare, and Malfare Welfare
- Axiomatic Characterization
- Estimation and Inference Linear Classifiers Statistical Estimati
- Fair PAC Learning
- In Conclusior

1 How much training data do we need?

- Concentration inequalities
- Vapnik-Chervonenkis dimension
- Rademacher averages

Cyrus Cousins

NeurIPS202

- Philosophy, Welfare, and Malfare ^{Welfare}
- Axiomatic Characterization
- Estimation and Inference Linear Classifiers Statistical Estimati
- Fair PAC Learning
- In Conclusion

1 How much training data do we need?

- Concentration inequalities
- Vapnik-Chervonenkis dimension
- Rademacher averages

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣□ めん⊙

Learning Linear Classifiers

- Linear Classifiers

1 How much training data do we need?

- Concentration inequalities
- Vapnik-Chervonenkis dimension
- Rademacher averages
- **2** How can we *learn* from the data?
 - Empirical Risk Minimization: select $h \in \mathcal{H}$ to optimize

$$\hat{\mathrm{R}}(h) \doteq rac{1}{m} \sum_{j=1}^{m} \ell(h(\pmb{x}_j), \pmb{y}_j)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Learning Linear Classifiers

Cyrus Cousins

NeurIPS202

- Philosophy, Welfare, and Malfare ^{Welfare} Malfare
- Axiomatic
- Estimation and Inference Linear Classifiers Statistical Estimati
- Fair PAC Learning
- In Conclusion

1 How much training data do we need?

- Concentration inequalities
- Vapnik-Chervonenkis dimension
- Rademacher averages
- O How can we *learn* from the data?
 - Empirical Risk Minimization: select $h \in \mathcal{H}$ to optimize

$$\hat{\mathrm{R}}(h) \doteq rac{1}{m} \sum_{j=1}^{m} \ell(h(\pmb{x}_j), \pmb{y}_j)$$

Learning Linear Classifiers

Learning Fair Linear Classifiers

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare Welfare Asiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimat

Fair PAC Learning Computationa

In Conclusio

• What changes with multiple groups $(x_{1:g,1:m}, y_{1:g,1:m})$?

ふりん 前 (中国)(中国)(中国)(日)

Learning Fair Linear Classifiers

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare Welfare Malfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimati

Fair PAC Learning ^{Computational} Learnability

In Conclusio

• We can handle each group individually:

$$\hat{\mathrm{R}}(h; \boldsymbol{x}_i, \boldsymbol{y}_i) \doteq \frac{1}{m} \sum_{j=1}^m \ell\big(h(\boldsymbol{x}_{i,j}), \boldsymbol{y}_{i,j}\big); \quad \forall i: \ \hat{h}_i \doteq \operatorname*{argmin}_{h \in \mathcal{H}} \hat{\mathrm{R}}(h; \boldsymbol{x}_i, \boldsymbol{y}_i)$$

Learning Fair Linear Classifiers

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare Malfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimat

Fair PAC Learning Computationa Learnability

In Conclusio

- What changes with multiple groups $(x_{1:g,1:m}, y_{1:g,1:m})$?
- We can handle each group individually:

$$\hat{\mathrm{R}}(h; \boldsymbol{x}_i, \boldsymbol{y}_i) \doteq \frac{1}{m} \sum_{j=1}^m \ell\big(h(\boldsymbol{x}_{i,j}), \boldsymbol{y}_{i,j}\big); \quad \forall i: \ \hat{h}_i \doteq \operatorname*{argmin}_{h \in \mathcal{H}} \hat{\mathrm{R}}(h; \boldsymbol{x}_i, \boldsymbol{y}_i)$$

Learning Fair Linear Classifiers

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare Malfare Axiomatic

Estimation and Inference Linear Classifiers Statistical Estimat

Fair PAC Learning Computation: Learnability

In Conclusior

• We can handle each group individually:

$$\hat{\mathrm{R}}(h; \boldsymbol{x}_i, \boldsymbol{y}_i) \doteq \frac{1}{m} \sum_{j=1}^m \ell(h(\boldsymbol{x}_{i,j}), \boldsymbol{y}_{i,j}); \quad \forall i: \ \hat{h}_i \doteq \operatorname*{argmin}_{h \in \mathcal{H}} \hat{\mathrm{R}}(h; \boldsymbol{x}_i, \boldsymbol{y}_i)$$

• What is the best classifier overall?

Learning Fair Linear Classifiers

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare Malfare Aviomatic

Axiomatic Characterizatio

Estimation and Inference Linear Classifiers Statistical Estimati

Fair PAC Learning Computationa Learnability

• What changes with multiple groups $(\mathbf{x}_{1:q,1:m}, \mathbf{y}_{1:q,1:m})$?

• We can handle each group individually:

n Conclusion

☆

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare Malfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computationa

In Conclusion

• Suppose sample mean $\hat{\ell}_i \doteq \frac{1}{m} \sum_{j=1}^m \ell(x_{i,j})$, true mean $\ell_i \doteq \mathop{\mathbb{E}}_{x \sim \mathcal{D}_i} [\ell(x)]$

Statistical Estimation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Statistical Estimation

Learning Cyrus Cousins

Axiomatic Fair

NeurIPS202

Philosophy, Welfare, and Malfare Welfare Asiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning

In Conclusion

- Suppose sample mean $\hat{\ell}_i \doteq \frac{1}{m} \sum_{j=1}^m \ell(x_{i,j})$, true mean $\ell_i \doteq \mathop{\mathbb{E}}_{x \sim \mathcal{D}_i} [\ell(x)]$
- By continuity and the law of large numbers:

$$\lim_{m\to\infty} \mathcal{M}(\hat{\boldsymbol{\ell}}) = \mathcal{M}(\boldsymbol{\ell})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣□ めん⊙

Statistical Estimation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Axiomatic Fair Learning

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare Welfare Malfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning

In Conclusion

- Suppose sample mean $\hat{\ell}_i \doteq \frac{1}{m} \sum_{j=1}^m \ell(x_{i,j})$, true mean $\ell_i \doteq \mathop{\mathbb{E}}_{x \sim \mathcal{D}_i} [\ell(x)]$
- By continuity and the law of large numbers:

$$\lim_{m\to\infty} \Lambda(\hat{\boldsymbol{\ell}}) = \Lambda(\boldsymbol{\ell})$$

- For finite sample size *m*
 - $\mathbb{E}[\mathbb{M}(\hat{\ell})] \neq \mathbb{M}(\ell)$
 - $M(\hat{\ell})$ is a biased estimator of $M(\ell)$!

Statistical Estimation

Axiomatic Fair Learning

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare Welfare Malfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computationa Learnability

In Conclusion

- Suppose sample mean $\hat{\ell}_i \doteq \frac{1}{m} \sum_{j=1}^m \ell(x_{i,j})$, true mean $\ell_i \doteq \mathop{\mathbb{E}}_{x \sim \mathcal{D}_i} [\ell(x)]$
- By continuity and the law of large numbers:

 $\lim_{m\to\infty} \mathbf{M}(\hat{\boldsymbol{\ell}}) = \mathbf{M}(\boldsymbol{\ell})$

- For finite sample size *m*
 - $\mathbb{E}[M(\hat{\ell})] \neq M(\ell)$
 - $M(\hat{\ell})$ is a *biased estimator* of $M(\ell)!$

Theorem (A Hoeffding-Type Malfare-Estimation Bound)

Suppose fair malfare $M_p(\cdot)$ $(p \ge 1)$, g groups, and loss range r. Then with probability at least $1 - \delta$

$$\left| \mathbf{M}(\boldsymbol{\ell}) - \mathbf{M}(\hat{\boldsymbol{\ell}}) \right| \leq r \sqrt{\frac{\ln \frac{2g}{\delta}}{2m}}$$

▲日 ▶ ▲母 ▶ ▲臣 ▶ ▲臣 ▶ ▲日 ▶

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare Welfare Malfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computationa Learnability

In Conclusion

Statistical Estimation (contd.)

Theorem (A Bernstein-Type Malfare-Estimation Bound)

Suppose fair malfare $M_p(\cdot)$ $(p \ge 1)$, g groups, loss range r, and maximum variance v_{\max} . Then with probability at least $1 - \delta$ over sampling, we have

$$\left| \mathcal{M}(\boldsymbol{\ell}) - \mathcal{M}(\hat{\boldsymbol{\ell}}) \right| \leq \underbrace{\frac{r \ln \frac{2g}{\delta}}{3m}}_{\text{SCALE TERM}} + \underbrace{\sqrt{\frac{v_{\max} \ln \frac{2g}{\delta}}{2m}}}_{\text{VARIANCE TERM}}$$

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare Malfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computational Learnability

In Conclusio

Statistical Estimation (contd.)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Theorem (A Bernstein-Type Malfare-Estimation Bound)

Suppose fair malfare $M_p(\cdot)$ $(p \ge 1)$, g groups, loss range r, and maximum variance v_{max} . Then with probability at least $1 - \delta$ over sampling, we have

$$\left| \mathcal{M}(\boldsymbol{\ell}) - \mathcal{M}(\hat{\boldsymbol{\ell}}) \right| \leq \underbrace{\frac{r \ln \frac{2g}{\delta}}{3m}}_{\text{SCALE TERM}} + \underbrace{\sqrt{\frac{v_{\max} \ln \frac{2g}{\delta}}{2m}}}_{\text{VARIANCE TERM}}$$

- Can show similar bounds for any concentration inequality
- \bullet Uniform bounds for a learnable family $\mathcal H$ with <code>Rademacheraverages</code>

$$\sup_{h \in \mathcal{H}} \left| \mathcal{M}(\boldsymbol{\ell}(h)) - \mathcal{M}(\hat{\boldsymbol{\ell}}(h)) \right| \leq \max_{i \in 1, \dots, g} 2\mathfrak{R}_{m}(\mathcal{F}, \mathcal{D}_{i}) + \varepsilon \in \boldsymbol{\Theta}\left(\frac{r \ln \frac{g}{\delta}}{m} + \sqrt{\frac{v_{\max} \ln \frac{g}{\delta}}{m}}\right)$$
Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare Malfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computational Learnability

In Conclusio

Statistical Estimation (contd.)

Theorem (A Bernstein-Type Malfare-Estimation Bound)

Suppose fair malfare $M_p(\cdot)$ $(p \ge 1)$, g groups, loss range r, and maximum variance v_{max} . Then with probability at least $1 - \delta$ over sampling, we have

$$\left| \mathcal{M}(\boldsymbol{\ell}) - \mathcal{M}(\hat{\boldsymbol{\ell}}) \right| \leq \underbrace{\frac{r \ln \frac{2g}{\delta}}{3m}}_{\text{SCALE TERM}} + \underbrace{\sqrt{\frac{v_{\max} \ln \frac{2g}{\delta}}{2m}}}_{\text{VARIANCE TERM}}$$

- Can show similar bounds for any concentration inequality
- \bullet Uniform bounds for a learnable family $\mathcal H$ with <code>Rademacheraverages</code>

$$\sup_{h \in \mathcal{H}} \left| \mathcal{M}(\boldsymbol{\ell}(h)) - \mathcal{M}(\hat{\boldsymbol{\ell}}(h)) \right| \leq \max_{i \in 1, \dots, g} 2\mathfrak{K}_m(\mathcal{F}, \mathcal{D}_i) + \varepsilon \in \boldsymbol{\Theta}\left(\frac{r \ln \frac{g}{\delta}}{m} + \sqrt{\frac{v_{\max} \ln \frac{g}{\delta}}{m}}\right)$$

- Control overfitting in machine learning
 - Finite \mathcal{H} , bounded Lipschitz families
 - Bounded linear regression, finite-dimensional linear classifiers,

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare Malfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computational Learnability

In Conclusio

Statistical Estimation (contd.)

Theorem (A Bernstein-Type Malfare-Estimation Bound)

Suppose fair malfare $M_p(\cdot)$ $(p \ge 1)$, g groups, loss range r, and maximum variance v_{max} . Then with probability at least $1 - \delta$ over sampling, we have

$$\left| \mathcal{M}(\boldsymbol{\ell}) - \mathcal{M}(\hat{\boldsymbol{\ell}}) \right| \leq \underbrace{\frac{r \ln \frac{2g}{\delta}}{3m}}_{\text{SCALE TERM}} + \underbrace{\sqrt{\frac{v_{\max} \ln \frac{2g}{\delta}}{2m}}}_{\text{VARIANCE TERM}}$$

- Can show similar bounds for any concentration inequality
- Uniform bounds for a learnable family $\mathcal H$ with <code>Rademacheraverages</code>

$$\sup_{h \in \mathcal{H}} \left| \mathcal{M}(\boldsymbol{\ell}(h)) - \mathcal{M}(\hat{\boldsymbol{\ell}}(h)) \right| \leq \max_{i \in 1, \dots, g} 2\mathfrak{R}_m(\mathcal{F}, \mathcal{D}_i) + \varepsilon \in \boldsymbol{\Theta}\left(\frac{r \ln \frac{g}{\delta}}{m} + \sqrt{\frac{v_{\max} \ln \frac{g}{\delta}}{m}}\right)$$

- Control overfitting in machine learning
 - Finite \mathcal{H} , bounded Lipschitz families
 - Bounded linear regression, finite-dimensional linear classifiers, Generalized linear models, support vector machines, multiple kernel learning, bounded depth decision trees, rank-constrained matrix factorization, neural networks,

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare Malfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computational Learnability

In Conclusio

Statistical Estimation (contd.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

Theorem (A Bernstein-Type Malfare-Estimation Bound)

Suppose fair malfare $M_p(\cdot)$ $(p \ge 1)$, g groups, loss range r, and maximum variance v_{max} . Then with probability at least $1 - \delta$ over sampling, we have

$$\left| \mathcal{M}(\boldsymbol{\ell}) - \mathcal{M}(\hat{\boldsymbol{\ell}}) \right| \leq \underbrace{\frac{r \ln \frac{2g}{\delta}}{3m}}_{\text{SCALE TERM}} + \underbrace{\sqrt{\frac{v_{\max} \ln \frac{2g}{\delta}}{2m}}}_{\text{VARIANCE TERM}}$$

- Can show similar bounds for any concentration inequality
- Uniform bounds for a learnable family $\mathcal H$ with <code>Rademacheraverages</code>

$$\sup_{h \in \mathcal{H}} \left| \mathcal{M}(\boldsymbol{\ell}(h)) - \mathcal{M}(\hat{\boldsymbol{\ell}}(h)) \right| \leq \max_{i \in 1, \dots, g} 2\mathfrak{R}_m(\mathcal{F}, \mathcal{D}_i) + \varepsilon \in \boldsymbol{\Theta}\left(\frac{r \ln \frac{g}{\delta}}{m} + \sqrt{\frac{v_{\max} \ln \frac{g}{\delta}}{m}}\right)$$

- Control overfitting in machine learning
 - Finite \mathcal{H} , bounded Lipschitz families
 - Bounded linear regression, finite-dimensional linear classifiers, Generalized linear models, support vector machines, multiple kernel learning, bounded depth decision trees, rank-constrained matrix factorization, neural networks, (constrained) Boolean formulae, boosting methods, convex ensemble methods, learning distance metrics, ...

Third Canto: Fair Probably Approximately Correct Learning

A generic theory of fair statistical and computational learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Cyrus Cousins

NeurIPS202

Philosophy, Welfare, and Malfare Malfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimatic

Fair PAC Learning

Computational Learnability

In Conclusior

Classical Statistical Learning Theory

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Consider linear classification: $\mathcal{H}_d \doteq \left\{ \vec{x} \mapsto \operatorname{sgn}(\vec{w} \cdot \vec{x}) \mid \vec{w} \in \mathbb{R}^d \right\}$
 - Optimize risk $\mathbb{E}_{(x,y)\sim \mathcal{D}}[\ell(y,h(x))]$, for 0-1 loss $\ell(y,\hat{y}) = 1 \mathbb{1}_{y}(\hat{y})$

Classical Statistical Learning Theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ()

Cyrus Cousins

NeurIPS2021

Philosophy, Welfare, and Malfare Malfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning

Computational Learnability

In Conclusior

- Consider linear classification: $\mathcal{H}_d \doteq \left\{ \vec{x} \mapsto \operatorname{sgn}(\vec{w} \cdot \vec{x}) \mid \vec{w} \in \mathbb{R}^d \right\}$
 - Optimize risk $\mathbb{E}_{(x,y)\sim \mathcal{D}}[\ell(y,h(x))]$, for 0-1 loss $\ell(y,\hat{y}) = 1 \mathbb{1}_{y}(\hat{y})$
- Can this class be *efficiently learned*?

What does that even mean?

Cyrus Cousins

NeurIPS2021

Philosophy, Welfare, and Malfare ^{Malfare} Aviomatic

Axiomatic Characterizati

Estimation and Inference Linear Classifiers Statistical Estimati

Fair PAC Learning

Computational Learnability

In Conclusion

Classical Statistical Learning Theory

- Consider linear classification: $\mathcal{H}_d \doteq \left\{ \vec{x} \mapsto \operatorname{sgn}(\vec{w} \cdot \vec{x}) \mid \vec{w} \in \mathbb{R}^d \right\}$
 - Optimize risk $\mathbb{E}_{(x,y)\sim \mathcal{D}}[\ell(y,h(x))]$, for 0-1 loss $\ell(y,\hat{y}) = 1 \mathbb{1}_{y}(\hat{y})$
- Can this class be *efficiently learned*?

Definition (PAC Learning)

Suppose

 $\textbf{1} Hypothesis class $\mathcal{H} \subseteq \mathcal{X} \to \mathcal{Y} $$

- \mathcal{H} is *PAC-learnable* w.r.t. ℓ iff \exists algorithm A s.t. \forall
 - $\textbf{1} \text{ distributions } \mathcal{D} \text{ over } \mathcal{X} \times \mathcal{Y}$
 - **2** additive errors $\varepsilon > 0$

A can identify a hypothesis $\hat{h} \in \mathcal{H}$ s.t.

- $\label{eq:alpha} \begin{tabular}{ll} \begin{tabular}{ll} A \end{tabular} \begin{tabular}{ll} \begin{tabular}{ll} A \end{tabular} \begin{tabular}{ll} \begin{tabular}{ll} A \end{tabular} \begin{tabular}{ll} A \$
- **2** with probability at least 1δ , \hat{h} obeys

$$\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\ell(y,\hat{h}(x))\right] \leq \underset{h^*\in\mathcal{H}}{\operatorname{argmin}} \mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\ell(y,h^*(x))\right] + \varepsilon$$

What does that even mean?

2 Loss function $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_{0+}$

3 failure probabilities $\delta \in (0, 1)$

・ロト・西ト・田・・田・ シック

Cyrus Cousins

NeurIPS2021

Philosophy, Welfare, and Malfare ^{Malfare} Aviomatic

Axiomatic Characterizati

Estimation and Inference Linear Classifiers Statistical Estimat

Fair PAC Learning

Computational Learnability

In Conclusion

Classical Statistical Learning Theory

What does that even mean?

- Consider linear classification: $\mathcal{H}_d \doteq \left\{ \vec{x} \mapsto \operatorname{sgn}(\vec{w} \cdot \vec{x}) \mid \vec{w} \in \mathbb{R}^d \right\}$
 - Optimize risk $\mathbb{E}_{(x,y)\sim \mathcal{D}}[\ell(y,h(x))]$, for 0-1 loss $\ell(y,\hat{y}) = 1 \mathbb{1}_y(\hat{y})$
- Can this class be *efficiently learned*?

Definition (PAC Learning)

Suppose

 $\textbf{1} Hypothesis class $\mathcal{H} \subseteq \mathcal{X} \to \mathcal{Y} $$

- $\mathcal{H} \text{ is } \textit{PAC-learnable w.r.t. } \ell \text{ iff } \exists \text{ algorithm } A \text{ s.t. } \forall$
 - $\textbf{1} \text{ distributions } \mathcal{D} \text{ over } \mathcal{X} \times \mathcal{Y}$
 - **2** additive errors $\varepsilon > 0$

A can identify a hypothesis $\hat{h} \in \mathcal{H}$ s.t.

- $\ \ \, {\bf 1} \ \, A \ \, {\rm has} \ {\rm m}(\varepsilon,\delta) < \infty \ \, {\rm sample \ \, complexity} \ \ \,$
- **2** with probability at least 1δ , \hat{h} obeys

 $\underset{(x,y)\sim\mathcal{D}}{\mathbb{E}}\big[\ell(y,\hat{h}(x))\big] \leq \underset{h^*\in\mathcal{H}}{\operatorname{argmin}} \underset{(x,y)\sim\mathcal{D}}{\mathbb{E}}\big[\ell(y,h^*(x))\big] + \varepsilon$

• May also consider *efficient PAC-learnable*: require *poly-time* A

2 Loss function $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_{0+}$

3 failure probabilities $\delta \in (0,1)$

Fairness and Statistical Learning Theory

Cyrus Cousins

NeurIPS2021

Philosophy, Welfare, and Malfare Welfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimatic

Fair PAC Learning

Computational Learnability

In Conclusion

Definition (Fair-PAC Learning)

Suppose

 $\textbf{1} \quad \text{Hypothesis class } \mathcal{H} \subseteq \mathcal{X} \to \mathcal{Y}$

 $\mathcal{H} \text{ is } \textit{fair PAC-learnable w.r.t. } \ell \text{ iff } \exists \text{ algorithm } A \text{ s.t. } \forall$

- 1 distributions $\mathcal{D}_{1:g}$ over $(\mathcal{X} \times \mathcal{Y})^g$
- **2** fair malfare functions $\mathbf{M}(\cdot)$
- A can identify a hypothesis $\hat{h} \in \mathcal{H}$ s.t.
- **1** A has $m(\varepsilon, \delta, g)$ sample complexity **2** with probability at least $1 - \delta$, \hat{h} obeys

2 Loss function $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_{0+}$

3 additive errors $\varepsilon > 0$

4 failure probabilities $\delta \in (0,1)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $\mathcal{M}\left(\underset{(x,y)\sim\mathcal{D}_{1}}{\mathbb{E}}\left[\ell(y,\hat{h}(x))\right],\dots\right) \leq \operatorname*{argmin}_{h^{*}\in\mathcal{H}}\mathcal{M}\left(\underset{(x,y)\sim\mathcal{D}_{1}}{\mathbb{E}}\left[\ell(y,h^{*}(x))\right],\dots\right) + \varepsilon$

Fairness and Statistical Learning Theory

Cyrus Cousins

NeurIPS2021

Philosophy, Welfare, and Malfare Welfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning

Computational Learnability

In Conclusion

Definition (Fair-PAC Learning)

Suppose

 $\textcircled{1} Hypothesis class <math>\mathcal{H} \subseteq \mathcal{X} \to \mathcal{Y}$

 $\mathcal{H} \text{ is } \textit{fair PAC-learnable w.r.t. } \ell \text{ iff } \exists \text{ algorithm } A \text{ s.t. } \forall$

- 1 distributions $\mathcal{D}_{1:g}$ over $(\mathcal{X} \times \mathcal{Y})^g$
- **2** fair malfare functions $M(\cdot)$
- A can identify a hypothesis $\hat{h} \in \mathcal{H}$ s.t.
 - **1** A has $m(\varepsilon, \delta, g)$ sample complexity **2** with probability at least $1 - \delta$, \hat{h} obeys

2 Loss function
$$\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_{0+1}$$

3 additive errors $\varepsilon > 0$

4 failure probabilities $\delta \in (0,1)$

$$\mathcal{M}\left(\underset{(x,y)\sim\mathcal{D}_{1}}{\mathbb{E}}\left[\ell(y,\hat{h}(x))\right],\ldots\right) \leq \operatorname*{argmin}_{h^{*}\in\mathcal{H}}\mathcal{M}\left(\underset{(x,y)\sim\mathcal{D}_{1}}{\mathbb{E}}\left[\ell(y,h^{*}(x))\right],\ldots\right) + \varepsilon$$

- Do we capture a valuable, generic notion of fair learning?
 - Axiomatic social planning problem motivation

Fairness and Statistical Learning Theory

Cyrus Cousins

NeurIPS2021

Philosophy, Welfare, and Malfare Welfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning

Computational Learnability

In Conclusion

Definition (Fair-PAC Learning)

Suppose

 $\textcircled{1} Hypothesis class <math>\mathcal{H} \subseteq \mathcal{X} \to \mathcal{Y}$

 $\mathcal{H} \text{ is } \textit{fair PAC-learnable w.r.t. } \ell \text{ iff } \exists \text{ algorithm } A \text{ s.t. } \forall$

- 1 distributions $\mathcal{D}_{1:g}$ over $(\mathcal{X} \times \mathcal{Y})^g$
- **2** fair malfare functions $\Lambda(\cdot)$
- A can identify a hypothesis $\hat{h} \in \mathcal{H}$ s.t.
 - **1** A has $m(\varepsilon, \delta, g)$ sample complexity **2** with probability at least $1 - \delta$, \hat{h} obeys

- **2** Loss function $\ell : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_{0+}$
- 3 additive errors $\varepsilon>0$
- (4) failure probabilities $\delta \in (0,1)$

- $\mathcal{M}\left(\underset{(x,y)\sim\mathcal{D}_{1}}{\mathbb{E}}\left[\ell(y,\hat{h}(x))\right],\ldots\right) \leq \operatorname*{argmin}_{h^{*}\in\mathcal{H}}\mathcal{M}\left(\underset{(x,y)\sim\mathcal{D}_{1}}{\mathbb{E}}\left[\ell(y,h^{*}(x))\right],\ldots\right) + \varepsilon$
- Do we capture a valuable, generic notion of fair learning?
 - Axiomatic social planning problem motivation
- Do practical fair PAC-learning algorithms exist?

Fairness and Statistical Learning Theory

Cyrus Cousins

NeurIPS2021

Philosophy, Welfare, and Malfare Welfare Malfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning

Computational Learnability

In Conclusion

Definition (Fair-PAC Learning)

Suppose

 $\textcircled{1} Hypothesis class <math>\mathcal{H} \subseteq \mathcal{X} \to \mathcal{Y}$

 $\mathcal{H} \text{ is } \textit{fair PAC-learnable w.r.t. } \ell \text{ iff } \exists \text{ algorithm } A \text{ s.t. } \forall$

- 1 distributions $\mathcal{D}_{1:g}$ over $(\mathcal{X} \times \mathcal{Y})^g$
- **2** fair malfare functions $\mathbf{M}(\cdot)$
- A can identify a hypothesis $\hat{h} \in \mathcal{H}$ s.t.
 - **1** A has $m(\varepsilon, \delta, g)$ sample complexity **2** with probability at least $1 - \delta$, \hat{h} obeys

2 Loss function
$$\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_{0+}$$

- 3 additive errors $\varepsilon > 0$
 - 4 failure probabilities $\delta \in (0,1)$

- $\mathcal{M}\left(\underset{(x,y)\sim\mathcal{D}_{1}}{\mathbb{E}}\left[\ell(y,\hat{h}(x))\right],\dots\right) \leq \underset{h^{*}\in\mathcal{H}}{\operatorname{argmin}} \mathcal{M}\left(\underset{(x,y)\sim\mathcal{D}_{1}}{\mathbb{E}}\left[\ell(y,h^{*}(x))\right],\dots\right) + \varepsilon$
- Do we capture a valuable, generic notion of fair learning?
 - Axiomatic social planning problem motivation
- Do practical fair PAC-learning algorithms exist?
- Can we theoretically relate PAC and fair-PAC learning?

Fairness and Statistical Learning Theory

Cyrus Cousins

NeurIPS2021

Philosophy, Welfare, and Malfare Welfare Malfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimatior

Fair PAC Learning

Computational Learnability

In Conclusion

Definition (Fair-PAC Learning)

Suppose

- Do we capture a valuable, generic notion of fair learning?
 - Axiomatic social planning problem motivation
- Do practical fair PAC-learning algorithms exist?
- Can we theoretically relate PAC and fair-PAC learning?

◆□▶ ◆■▶ ◆国▶ ◆国▶ ●目 - の々で

Computational Learning Theory

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cyrus Cousins

NeurIPS202

- Philosophy, Welfare, and Malfare Malfare
- Axiomatic Characterization
- Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning

Computational Learnability

In Conclusion

- Can we construct *computationally-efficient* FPAC learners from PAC learners?
 - Efficient means $\operatorname{Poly}(\frac{1}{\varepsilon}, \frac{1}{\delta}, g)$ sample complexity
 - Realizable case: reduction preserves polynomial-time complexity
 - Agnostic case: Cyrus has no answer (yet)

Computational Learning Theory

Cyrus Cousins

NeurIPS202

- Philosophy, Welfare, and Malfare ^{Welfare}
- Axiomatic Characterizatio
- Estimation and Inference Linear Classifiers Statistical Estimation
- Fair PAC Learning
- Computational Learnability
- In Conclusion

- Can we construct *computationally-efficient* FPAC learners from PAC learners?
 - *Efficient* means $\operatorname{Poly}(\frac{1}{\varepsilon}, \frac{1}{\delta}, g)$ sample complexity
 - Realizable case: reduction preserves polynomial-time complexity
 - Agnostic case: Cyrus has no answer (yet)
- Are conditions for efficient PAC sufficient for efficient FPAC?
 - This area looks promising!

Computational Learning Theory

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cyrus Cousins

NeurIPS202

- Philosophy, Welfare, and Malfare ^{Welfare}
- Axiomatic Characterizatio
- Estimation and Inference Linear Classifiers Statistical Estimatio

Fair PAC Learning

- Computational Learnability
- In Conclusion

• Can we construct *computationally-efficient* FPAC learners from PAC learners?

- Efficient means $\operatorname{Poly}(\frac{1}{\varepsilon}, \frac{1}{\delta}, g)$ sample complexity
- Realizable case: reduction preserves polynomial-time complexity
- Agnostic case: Cyrus has no answer (yet)
- Are conditions for efficient PAC sufficient for efficient FPAC?
 - This area looks promising!
 - Efficiently Coverable Classes:
 - If we can efficiently approximately enumerate ${\cal H}$
 - And our loss-function is well-behaved
 - $\bullet\,$ Then we can PAC or FPAC-learn in ${\cal H}\,$
 - Think "all separating hyperplanes of bounded dimension"

Computational Learning Theory

Cyrus Cousins

NeurIPS2021

- Philosophy, Welfare, and Malfare ^{Welfare} Malfare
- Axiomatic Characterizatio
- Estimation and Inference Linear Classifiers Statistical Estimatio
- Fair PAC Learning
- Computational Learnability
- In Conclusion

- Can we construct *computationally-efficient* FPAC learners from PAC learners?
 - Efficient means $\operatorname{Poly}(\frac{1}{\varepsilon}, \frac{1}{\delta}, g)$ sample complexity
 - Realizable case: reduction preserves polynomial-time complexity
 - Agnostic case: Cyrus has no answer (yet)
- Are conditions for efficient PAC sufficient for efficient FPAC?
 - This area looks promising!
 - Efficiently Coverable Classes:
 - If we can efficiently approximately enumerate ${\cal H}$
 - And our loss-function is well-behaved
 - $\bullet\,$ Then we can PAC or FPAC-learn in ${\cal H}\,$
 - Think "all separating hyperplanes of bounded dimension"
 - Convex optimization:
 - Suppose bounded parameter space Θ
 - Assume $\ell \circ h_{ heta}$ is convex + Lipschitz continuous in heta
 - Then ε -empirical risk minimization requires *polynomial time*
 - Same for empirical malfare minimization (this work)

Convex Optimization

Cyrus Cousins

NeurIPS202

- Philosophy Welfare, ar Malfare
- Welfare
- Malfare Axiomatic
- Characterizatio
- Estimation and Inference Linear Classifiers Statistical Estimat
- Fair PAC Learning
- Computational Learnability
- In Conclusion

Strategy: Assume class $\ell \circ \mathcal{H}$ is:

- Uniformly Convergent
 - Vapnik-Chervonenkis theory: Uniform bounds over distribution
 D
 - Estimation error: $\epsilon(m, \delta)$ s.t.
 - $\mathbb{P}\left(\sup_{f\in\ell\circ\mathcal{H}}\left|\mathbb{E}[f]-\widehat{\mathbb{E}}[f]\right|\geq\epsilon(m,\delta)\right)\leq\delta$
 - Sample complexity
 - $$\begin{split} \mathbf{m}(\varepsilon,\delta) &\doteq \operatorname{argmin}\left\{m: \epsilon(m,\delta) \leq \varepsilon\right\} \\ &\in \operatorname{Poly}\left(\frac{1}{\varepsilon},\frac{1}{\delta}\right) \end{split}$$
- Ø Bounded
 - Bounded parameter space $\Theta \in \mathbb{R}^d$
- 8 Lipschitz Continuous
 - λ_{ℓ} -Lipschitz loss ℓ , $\lambda_{\mathcal{H}}$ -Lipschitz \mathcal{H}
- 4 Convex
 - $\ell(\circ h(x;\theta),y)$ is convex in θ over Θ

The Algorithm

- 1 Draw $m(\frac{\varepsilon}{3}, \frac{\delta}{g})$ samples (per group)
- 2 Define *empirical malfare* objective

 $f(\theta) \doteq \mathcal{M}_p(i \mapsto \hat{\mathcal{R}}(h(\cdot; \theta); \ell, \boldsymbol{x}_i, \boldsymbol{y}_i))$

3 Iterations:
$$n \doteq \left(\frac{3 \operatorname{diam}(\Theta) \lambda_{\ell} \lambda_{\mathcal{H}}}{\varepsilon}\right)^2$$

4 Learning rate
$$\alpha \doteq \frac{\operatorname{diam}(\Theta)}{\lambda_{\ell}\lambda_{\mathcal{H}}\sqrt{n}} \approx \frac{\varepsilon}{3\lambda_{\ell}^2\lambda_{\mathcal{H}}^2}$$

- Shor's projected subgradient algorithm $\hat{\theta} \leftarrow \mathrm{PSG}(f, \Theta, n, \alpha)$
- **6** Return $h(\cdot; \hat{\theta})$

W.h.p., estimation + optimization error don't exceed ε

Polynomial time + sample complexity

Convex Optimization

- 4 Convex
 - $\ell(\circ h(x; \theta), y)$ is convex in θ over Θ

W.h.p., estimation + optimization error don't exceed ε

Polynomial time + sample complexity

◆□▶ ◆■▶ ◆国▶ ◆国▶ ○日 ● の々で

◆□▶ ◆■▶ ◆国▶ ◆国▶ ○日 ● の々で

NeurIPS2021

Philosophy, Welfare, and Malfare Malfare Axiomatic

Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning

In Conclusion

Recap: Characterizing Fair PAC-Learnability

- Classical method: measure population sentiment with welfare
- This work: welfare and malfare on equal axiomatic footing
 - Malfare minimization is fair extension of risk minimization

NeurIPS2021

- Philosophy, Welfare, and Malfare Malfare Axiomatic
- Estimation and Inference Linear Classifiers Statistical Estimatio

Fair PAC Learning Computationa Learnability

In Conclusion

Recap: Characterizing Fair PAC-Learnability

- Classical method: measure population sentiment with welfare
- This work: welfare and malfare on equal axiomatic footing
 - Malfare minimization is fair extension of risk minimization
- Under some conditions, PAC = FPAC (statistical equivalence)
 - FPAC \implies PAC (as a special case)
 - Constructive $\mathrm{PAC} \implies \mathrm{FPAC}$ reduction in realizable case
 - General case is non-constructive, assumes no-free-lunch argument

NeurIPS2021

- Philosophy, Welfare, and Malfare ^{Malfare} Axiomatic
- Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computationa Learnability

In Conclusion

- Classical method: measure population sentiment with welfare
- This work: welfare and malfare on equal axiomatic footing
 - Malfare minimization is fair extension of risk minimization
- Under some conditions, PAC = FPAC (statistical equivalence)
 - FPAC \implies PAC (as a special case)
 - Constructive $PAC \implies FPAC$ reduction in realizable case
 - General case is non-constructive, assumes no-free-lunch argument
- Open research question: does efficient PAC \implies efficient FPAC?
 - Constructive reduction in realizable case
 - Efficient cover enumerability sufficient for both
 - Standard convex optimization assumptions sufficient for both

NeurIPS2021

- Philosophy, Welfare, and Malfare Malfare Axiomatic
- Estimation and Inference Linear Classifiers Statistical Estimation

Fair PAC Learning Computational Learnability

In Conclusion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Classical method: measure population sentiment with welfare
- This work: welfare and malfare on equal axiomatic footing
 - Malfare minimization is fair extension of risk minimization
- Under some conditions, PAC = FPAC (statistical equivalence)
 - FPAC \implies PAC (as a special case)
 - Constructive $\mathrm{PAC} \implies \mathrm{FPAC}$ reduction in realizable case
 - General case is non-constructive, assumes no-free-lunch argument
- Open research question: does efficient PAC \implies efficient FPAC?
 - Constructive reduction in realizable case
 - Efficient cover enumerability sufficient for both
 - Standard convex optimization assumptions sufficient for both

Conjecture: No, \exists PAC-learnable class, where FPAC-learning is NP-hard (and P \neq NP)

Recap: Malfare, Welfare, and FPAC Learning

Cyrus Cousins

Computationa Learnability

In Conclusion

Recap: Malfare, Welfare, and FPAC Learning

 ∞

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Learning

In Conclusion

Axiomatic Fair

Why use malfare instead of welfare?

- (1) "Most" machine learning tasks more naturally cast as loss minimization
 - Exceptions: reward, profit, accuracy maximization

Recap: Malfare, Welfare, and FPAC Learning

Learning Cyrus Cousins

Axiomatic Fair

Philosophy, Welfare, and Malfare Welfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimatio

Fair PAC Learning Computational Learnability

In Conclusion

Why use malfare instead of welfare?

- "Most" machine learning tasks more naturally cast as *loss minimization*
 - Exceptions: reward, profit, accuracy maximization
- Pair PAC-Learning with welfare targets is tricky
 - Inherent statistical instability for $p \in [0, 1)$
 - Require additional assumptions, or restricted capabilities

Recap: Malfare, Welfare, and FPAC Learning

Learning Cyrus Cousins

Axiomatic Fair

Philosophy, Welfare, and Malfare Welfare Axiomatic Characterization

Estimation and Inference Linear Classifiers Statistical Estimati

Fair PAC Learning ^{Computational} Learnability

In Conclusion

Why use malfare instead of welfare?

- "Most" machine learning tasks more naturally cast as *loss minimization*
 - Exceptions: reward, profit, accuracy maximization
- Pair PAC-Learning with welfare targets is tricky
 - Inherent statistical instability for $p \in [0, 1)$
 - Require additional assumptions, or restricted capabilities
- **8** Why not?