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Face Recognition Technology
o Differential performance = algorithmic discrimination
® Facial recognition and policing
® Speech recognition and accessibility
® Many more examples

® What has gone wrong? Is the problem:
@ that a machine is learning;
@® from what a machine is learning; or
©® how a machine is learning?
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Focus on differential accuracy between protected groups

® Want group level fairness
® Learn from sample of many individuals drawn from each group

Claim: current ML systems are trained:

® On the wrong data (well-known)
® |In the wrong way

e Optimize models sensitive to performance on protected-groups
® Introduce malfare learning target
® Consider all groups (possibly nonlinearly)

Theoretical treatment of learning and statistics

® Qverfitting and statistical estimation
® Computational complexity issues in learning
® Introduce fair-PAC-learning to theoretically treat these issues
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Utility: U(-) : X — Ro4 Subjective measurement of positive attribute

® Happiness, satisfaction, resource ownership @

Welfare summarizes population-level utility across = (@1, ..., ;)
“The subjective, measured objectively.”

Welfare

Utilitarian welfare: average utility U(-)
1Y
Wy (U(z), ..., Uzg)) = EZU(%)
i=1

® FEgalitarian welfare: worst-case utility U(-)

WEgal(U(wl)a s aU(mg)) = lé{nngU("Bl)

® A fair society should have equality
® [ncentivize aiding the most needy first
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M e What is Welfare (cont.)

Pop. A Pop. B Pop. C

o 0E00 COE® CEE®
®

Utilitarian

Egalitarian

® | imitations

® Nonnegativity

® Positive directedness (utility is desirable)
® Which welfare function to use?

® Analogy: worst-case vs average case bounds
® Analogy: tail bounds vs expectation
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ST The Power Mean

Suppose vector £ = (£1,...,£,) representing utility or loss across a population
| |
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® Smooth interpolation between min, arithmetic mean, and max
® Other special cases: geometric, harmonic, and quadratic means

® Monotonic in p: interpolate between utilitarian and egalitarian
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A ® Why do we care about cardinal welfare?
® Welfare W(-) encodes an ideal notion of societal wellbeing (fairness)
® Utilitarian versus Egalitarian
® The social planning problem
® Select allocation of goods and services to maximize welfare
® fair ML is learning an optimal allocation from data?
® | earn policy to maximize welfare of per-group utilities

Is it really that easy?

What if we want to minimize a loss function?
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/\ Need to define a utility function U(-)

h* = argmax W E [U(h(z),9)],..
heEH (z,y)~D1
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/\ Don't know D;.4; have to work from training samples
® Select / to optimize empirical risk / malfare / welfare estimates
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Theorem (Debreu-Gorman (1959))

For some strictly increasing F, p € R, all welfare functions satisfying 1-5 take form

M(£) = (sgn Zep> or M(# (He)

/\ Can be non-Lipschitz, arbitrarily hard to estimate from sample
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Theorem (Axiomatic Characterization of Welfare and Malfare)

For any aggregator function M(-) satisfying 1-7, 3p € R s.t.

2

M(£) = M, (£) = ¢ 3221? or M(€) =

which are Lipschitz-continuous in £ for p € (—o0,0) U [1, 00).
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1: Monotonicity
2:  Symmetry .
3:  Continuity 7: Unit-Scale
o 4. 1UA 6: x Linearity
Y

Mono. in G. Mean Mono. in p-Mean p-Mean
M(€) = (F o My)(£) M(€) = (F o My)(£) M(£) = M, (£)
8: PD /APD
\ \4

p<1 p>1
Fair Welfare

Fair I\Zalfare




Second Canto: Estimation, Inference, and Fair Machine Learning

The Statistics of Fair Machine Learning as Malfare Minimization
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® What changes with multiple groups (1.9,1:m, Y1:g,1:m)?
® We can handle each group individually:

R(h; x, yi) = ZE (@ij), ¥ij); Vi ﬁiiar}ngl{inR(h;mi,yi)

® What is the best classifier overall?
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Cearn Learning Fair Linear Classifiers

® What changes with multiple groups (1.9,1:m, Y1:g,1:m)?

® We can handle each group individually:
m

~ 1 A ~
R(h; i, yi) = — ) C(h(xij),y:j); Vi: hy =argminR(h; x;, y;

(s 21, 90) = > (h(2i5), 1) emin (1 2. 3,
® What is the best classifier overall?

® Empirical malfare minimization h= argmin M (R(h; 1, 1), f{(h; T2, yz))
Linear Classifiers heH

Class A
Class B
Linear Separator
Group 1
Group 2

AXx—HENE
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. 1 .
® Suppose sample mean £; = - 25(:1:”) true mean £; = IEEDi[f(x)]
]:
® By continuity and the law of large numbers:

lim M(£) = M\ (¢)

m—00

s ® For finite sample size m
* B[M(E)] £ M(8)

® M(£) is a biased estimator of A\(£)!

Theorem (A Hoeffding-Type Malfare-Estimation Bound)

Suppose fair malfare A\, (-) (p > 1), g groups, and loss range r. Then with
probability at least 1 — §




M e Statistical Estimation (contd.)

Theorem (A Bernstein-Type Malfare-Estimation Bound)

Suppose fair malfare M\, (-) (p > 1), g groups, loss range r, and maximum variance
Umax. 1hen with probability at least 1 — § over sampling, we have

~ rln 2 Vmnax In 2
_ < 05 max 7§
‘AA(E) M) < 3m 2m

SCALE TERM  yARIANCE TERM
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Theorem (A Bernstein-Type Malfare-Estimation Bound)

Suppose fair malfare M\, (-) (p > 1), g groups, loss range r, and maximum variance
Umax. 1hen with probability at least 1 — § over sampling, we have

rln % Umax 1 25—9

(m@-m@

<
- 3m 2m

SCALE TERM  yARiANCE TERM
® Can show similar bounds for any concentration inequality

® Uniform bounds for a learnable family  with Rademacher averages
g
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Theorem (A Bernstein-Type Malfare-Estimation Bound)

Suppose fair malfare M\, (-) (p > 1), g groups, loss range r, and maximum variance
Umax. 1hen with probability at least 1 — § over sampling, we have

rln % Umax 1 25—9

(m@—m@

<
- 3m 2m

SCALE TERM  yARiANCE TERM
® Can show similar bounds for any concentration inequality

Statistical Estimation

® Uniform bounds for a learnable family  with Rademacher averages

. rin { Vrnax In 4
sup|M(L(h)) — M(L(h)) | < max 2R, (F,D;)+e € O +
heH i€1l,...,9 m m

® Control overfitting in machine learning

® Finite H, bounded Lipschitz families
® Bounded linear regression, finite-dimensional linear classifiers,
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Theorem (A Bernstein-Type Malfare-Estimation Bound)

Suppose fair malfare M\, (-) (p > 1), g groups, loss range r, and maximum variance
Umax. 1hen with probability at least 1 — § over sampling, we have

- rln %
ML) — M\(£ —
NGRSO =
! SCALE TERM  yARiANCE TERM
S e Can show similar bounds for any concentration inequality
® Uniform bounds for a learnable family  with Rademacher averages
A rind Vmax 10 2
sup|M(£(h)) — M(€(h)) | < max 2R,,(F,D;)+c € © 0, L =Y
i€1l,...,9 m m

heH

® Control overfitting in machine learning

® Finite H, bounded Lipschitz families

® Bounded linear regression, finite-dimensional linear classifiers,
Generalized linear models, support vector machines, multiple kernel learning, bounded
depth decision trees, rank-constrained matrix factorization, neural networks,
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Theorem (A Bernstein-Type Malfare-Estimation Bound)

Suppose fair malfare M\, (-) (p > 1), g groups, loss range r, and maximum variance
Umax. 1hen with probability at least 1 — § over sampling, we have

2g
T'IHT

(m@—m@

3m

SCALE TERM  yARiANCE TERM
S | Est . . . . .
® Can show similar bounds for any concentration inequality

® Uniform bounds for a learnable family  with Rademacher averages

g g
n % Upax 1N £

M(E(R)) — M(L(h)) | < 2R, (F,D; Q)
sup (€(R)) (€(h)) —,-é?f?_’fgi‘ (F,Di)+e € - -

® Control overfitting in machine learning

® Finite H, bounded Lipschitz families
® Bounded linear regression, finite-dimensional linear classifiers,
Generalized linear models, support vector machines, multiple kernel learning, bounded

depth decision trees, rank-constrained matrix factorization, neural networks,
(constrained) Boolean formulae, boosting methods, convex ensemble methods, learning distance metrics, ...



Third Canto: Fair Probably Approximately Correct Learning

A generic theory of fair statistical and computational learning
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e Consider linear classification: H4 = { T sgn(w - 7) ‘ o € RY }
® Optimize risk E(; ) ~p [((y, h(z))], for 0-1 loss £(y, §) =1 — 1,(§)

® Can this class be efficiently learned? What does that even mean?

Definition (PAC Learning)

Suppose
@ Hypothesis class H C X — )Y @ Loss function £: Y x Y — Ry
‘H is PAC-learnable w.r.t. ¢ iff 3 algorithm A s.t. V
Ejarmpaﬁ\gc @ distributions D over X x Y © failure probabilities § € (0, 1)

@® additive errors € > 0

A can identify a hypothesis heHst.
@ A has m(e,d) < co sample complexity
@® with probability at least 1 — 6, h obeys

E [l(y,h(z))] <argmin E [(y,h*(z))] +¢
o 2 el Sempmin 1[G, ()]
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e Consider linear classification: H4 = { T sgn(w - 7) ‘ o € RY }
® Optimize risk E(; ) ~p [((y, h(z))], for 0-1 loss £(y, §) =1 — 1,(§)

® Can this class be efficiently learned? What does that even mean?

Definition (PAC Learning)

Suppose
@ Hypothesis class H C X — )Y @ Loss function £: Y x Y — Ry
‘H is PAC-learnable w.r.t. ¢ iff 3 algorithm A s.t. V
Ejarmpaﬁ\gc @ distributions D over X x Y © failure probabilities § € (0, 1)

@® additive errors € > 0

A can identify a hypothesis heHst.
@ A has m(e,d) < co sample complexity
@® with probability at least 1 — 6, h obeys

E [l(y,h(z))] <argmin E [(y,h*(z))] +¢
o 2 el Sempmin 1[G, ()]

® May also consider efficient PAC-learnable: require poly-time A
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Definition (Fair-PAC Learning)

Suppose

® Hypothesisclass H C X — Y @® Loss function £: Y x Y — Ry
‘H is fair PAC-learnable w.r.t. ¢ iff 3 algorithm A s.t. V

@ distributions D;., over (X x V)Y © additive errors € > 0

@® fair malfare functions M(-) @ failure probabilities § € (0,1)

A can identify a hypothesis h € H s.t.

o PAC ® A has m(g,d, g) sample complexity
Learning @® with probability at least 1 — 4, h obeys

M ((w,y}i% [y, fz(x))] yee ) < agfg{in[\(\ ((z,y])E~D1 [¢(y, h*(2))], - - ) +e
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Definition (Fair-PAC Learning)

Suppose

® Hypothesisclass H C X — Y @® Loss function £: Y x Y — Ry
‘H is fair PAC-learnable w.r.t. ¢ iff 3 algorithm A s.t. V

@ distributions Dy, over ( X x V)9 add|t|ve errors € > 0

@® fair malfare functions M (- obabllltles de(0,1)

A can identify a hypothesis h € 3'-[ s.t.

o PAC ® A has m(g, § g spaple compI ity
=l ool iy else: would | ask?

AA(( J%ED [ﬁ(y,h( ))],) gargminAA(( E [E(y,h*(x))],.--)—i-z?

z,y)~D1 h*eH z,y)~D1
® Do we capture a valuable, generic notion of fair learning?
® Axiomatic social planning problem motivation
® Do practical fair PAC-learning algorithms exist?
e Can we theoretically relate PAC and fair-PAC learning?
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Cyrus Cousins

® Can we construct computationally-efficient FPAC learners from PAC learners?
* Efficient means Poly(Z, 1, g) sample complexity
® Realizable case: reduction preserves polynomial-time complexity
® Agnostic case: Cyrus has no answer (yet)
® Are conditions for efficient PAC sufficient for efficient FPAC?
® This area looks promising!
o Efficiently Coverable Classes:
® |f we can efficiently approximately enumerate ‘H
® And our loss-function is well-behaved
Leambiiy ® Then we can PAC or FPAC-learn in H
® Think “all separating hyperplanes of bounded dimension”
® Convex optimization:
® Suppose bounded parameter space ©
® Assume £ o hg is convex + Lipschitz continuous in 0
® Then e-empirical risk minimization requires polynomial time
® Same for empirical malfare minimization (this work)
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Strategy: Assume class £ o H is: The Algorithm

® Draw m(3, %) samples (per group)

® Define empirical malfare objective

@® Uniformly Convergent

® Vapnik-Chervonenkis theory:
Uniform bounds over distribution
D

® FEstimation error. €(m,d) s.t.

P | sup
fELOH

® Sample complexity

£(0) = My (i = R(h(50); £, T3, y5))

3 diam(©) A Ay ) 2
&

@ lterations: n = <

Elf] - Blf)| > e(m,9) | <6
gﬁ\z(\% ~ 3,\35,\3{

@ Shor's projected subgradient algorithm
0 < PSG(f,0,n,a)

@ Return h(-;6)

O Learning rate a =
m(e,d) = argmin {m : e(m,d) < e}
€ Poly (%7 %)
® Bounded

¢ Bounded parameter space © € R?

© Lipschitz Continuous

® )\,-Lipschitz loss ¢, Ay-Lipschitz H
@ Convex
® ((oh(z;6),y) is convex in 6 over ©

W.h.p., estimation + optimization
error don't exceed ¢

Polynomial time + sample complexity
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Strategy: Assume class £ o H is:
@® Uniformly Convergent

® Vapnik-Chervonenkis theory:

Uniform bounds over distribution
D

® FEstimation error. €(m,d) s.t.
P ( sup [E[f] ~ B[] > e(m. 5)
fELOH

® Sample complexity

: . m(e,d) = argmin {m : e(m,d) < e}
pelkekih € Poly (l l)
® Bounded

¢ Bounded parameter space © € R?
© Lipschitz Continuous
® )\,-Lipschitz loss ¢, Ay-Lipschitz H

The Algorithm
< %) samples (per group)

pirical malfare objective

R(A(-;0); ¢, ;, vi))
3 diam(©) A Ay ) 2

m(@) ~ £
Xedv/n "~ 3XIAT,

ubgradient algorithm
(f,0,n,q)

W.h.p., estimation + optimization
@ Convex error don't exceed ¢

® ((oh(z;0),y) is convex in 6 over © Polynomial time + sample complexity
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Convex £ o Hy
Lipschitz £, H4
O, C RPoly(d)
1

Efficient
Covering

UCpoly (£)
myc(H4, €,0) € Poly(L, 5, d)

| diam ©4) €Poly(d)

Poly(d tlme to:
PI‘OJ

(—\

(" )

[PAcpoly(z) ERM ]<=[FPACpoly(€) EMM]
Agnostic Learning
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Classical method: measure population sentiment with welfare

This work: welfare and malfare on equal axiomatic footing
® Malfare minimization is fair extension of risk minimization
¢ Under some conditions, PAC = FPAC (statistical equivalence)
® FPAC = PAC (as a special case)
® Constructive PAC = FPAC reduction in realizable case
® General case is non-constructive, assumes no-free-lunch argument
® QOpen research question: does efficient PAC — efficient FPAC?
® Constructive reduction in realizable case
® Efficient cover enumerability sufficient for both
® Standard convex optimization assumptions sufficient for both
Conjecture: No, 3 PAC-learnable class, where FPAC-learning is NP-hard (and P # NP)

In Conclusion
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Egalitarian W(-) Utilitarian M(-)

/ Fair Welfare
oo

1
zg:gl? Lipschitz Fair Malfare
' Discontinuous

= about £; =0 Egalitarian M ()

Why use malfare instead of welfare?
In Conclusion

@® "Most” machine learning tasks more naturally cast as loss minimization
® Exceptions: reward, profit, accuracy maximization

@® Fair PAC-Learning with welfare targets is tricky

® |nherent statistical instability for p € [0, 1)
® Require additional assumptions, or restricted capabilities

© Why not?
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