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Welfare measures overall utility across a population, whereas malfare measures overall disutility, and the social planner’s problem can
be cast either as maximizing the former or minimizing the latter. We show novel bounds on the expectations and tail probabilities of
estimators of welfare, malfare, and regret of per-group (dis)utility values, where estimates are made from a finite sample drawn from
each group. In particular, we consider estimating these quantities for individual functions (e.g., allocations or classifiers) with standard
probabilistic bounds, and optimizing and bounding generalization error over hypothesis classes (i.e., we quantify overfitting) using
Rademacher averages. We then study algorithmic fairness through the lens of sample complexity, finding that because marginalized or
minority groups are often understudied, and fewer data are therefore available, the social planner is more likely to overfit to these
groups, thus even models that seem fair in training can be systematically biased against such groups. We argue that this effect can be
mitigated by ensuring sufficient sample sizes for each group, and our sample complexity analysis characterizes these sample sizes.
Motivated by these conclusions, we present progressive sampling algorithms to efficiently optimize various fairness objectives.
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1 INTRODUCTION

Machine learning systems in settings like facial recognition [10, 11, 13] andmedicine [3, 4, 12] exhibit differential accuracy
across race and other protected groups. This can lead to discrimination: for example, facial recognition in policing yields
disproportionate false-arrest rates [24], and machine learning in medicine can lead to inequity of health outcomes [18],
both of which exacerbate existing structural inequalities impacting minority groups. In recent years, researchers have
proposed welfare-centric fair learning models, which constrain or optimize welfare [15, 22, 26, 28, 38, 44, 45] or malfare
[1, 14, 20, 30, 33, 43] to promote fair learning across all groups, as well as regret-based methods [7, 39], which similarly
promote fairness by minimizing the maximum dissatisfaction of any group, relative to their preferred outcome, i.e., how
much excess risk is incurred, or utility is lost, to any group by compromising on a shared model.

We study sampling and learning problems in the optimization of welfare, malfare, and regret objectives. In particular,
our setting subsumes the minimax fair learning [1, 20, 30, 33, 43] and fair-PAC learning [14] settings, by optimizing
arbitrary malfare or welfare functions, as well as the multi-group agnostic PAC learning [7, 39] setting, by considering
arbitrary malfare functions (rather than just the maximum) of per-group regret values. This extension naturally and
smoothly interpolates between minimizing utilitarian (i.e., weighted average) and egalitarian (i.e., maximum) malfare
of risk or regret. Crucially, this allows for fine-grained control over the desired fairness concept, and mitigates the
minority rule issues of minimax methods, while remaining axiomatically grounded in cardinal welfare theory. We bound
the generalization error of optimizing welfare, malfare, and regret objectives, and find that while the power-mean

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

1

https://doi.org/10.1145/3531146.3533243


FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea Cyrus Cousins

malfare is always easy to estimate, due to Lipschitz-continuity (as studied by Cousins [14]), our learning algorithms
work for any malfare, welfare, or regret objective that is continuous and monotonic in per-group (dis)utility values.

We then study algorithmic fairness through the lens of sample complexity, finding that because marginalized or
minority groups are often understudied, and fewer data are therefore available, the social planner is more likely to overfit
to these groups. Consequently, even models that seem fair in training can be systematically biased against such groups.
Section 3 shows that this effect can be mitigated with sufficient per-group sample sizes, and §4 presents progressive
sampling methods, which dynamically sample until a near-optimal model (w.r.t. some fairness objective) is learned.

Our bounds leverage the specific character of the objective at hand; for example, utilitarian welfare is sensitive to
the average confidence radius across groups, whereas egalitarian welfare is more sensitive to the confidence radii of
disadvantaged (i.e., low-utility or high-risk) groups. Furthermore, our progressive sampling methods are tailored to
three realistic models of data generation: in the joint sampling model, each sample contains a piece of information for
every group, in the mixture sampling model, samples are annotated with sets of group labels, and in the conditional
sampling model, we are allowed to choose from which groups to sample. While our settings and modeling assumptions
are practically motivated, this is a highly theoretical paper, and all novel results are meticulously proven in appx. A.

2 LEARNING FRAMEWORK AND OBJECTIVES

In this section, we introduce the functional forms of the objects and random spaces that we operate over, and we
define our learning objectives. In particular, §2.1 presents the welfare, malfare, and regret objectives, which compile
per-group sentiment values into a cardinal objective value that can be optimized and analyzed, then §2.2 reifies this
abstract mathematics with three realistic models of data-collection, each of which requires its own statistical treatment
to efficiently learn from data, i.e., to optimize and bound objectives, while minimizing the cost of obtaining said data.

We henceforth assume a supervised learning setting, where X is the domain and Y is the codomain. We also assume
either a loss function1 ℓ (·, ·) : Y′ × Y → R0+ or a utility function u(·, ·) : Y′ × Y → R0+, which map predictions and
labels onto negatively connoted loss or disutility, or positively connoted gain or utility, generically termed a sentiment

function s(·, ·) : Y′ × Y → R0+. In most supervised learning settings, a single probability distribution D over X × Y
suffices, but we assume a setZ of 6 groups, and we model the experiences and conditions of each group as its own
distribution, i.e., we have D1, . . . ,D6 . For convenience, we often compose the sentiment function with a predictor or
model ℎ(·) : X → Y′, taking (s ◦ ℎ) (G,~) � s(ℎ(G), ~), thus we quantify model performance for group 8 as ED8

[s ◦ ℎ].

2.1 Fair Learning with Malfare, Welfare, and Regret Objectives

Here we define the welfare, malfare, and regret objectives. While the details differ, each of these is a function of the
expected utility or loss (generically sentiment) of some ℎ : X → Y′ for each of the 6 groups, and we are interested in
selecting the model or hypothesis ℎ from some hypothesis class H ⊆ X → Y′ that optimizes the given objective.

Malfare and Welfare. A welfare function W(s;w) measures overall positive utility s across a population weighted by
w , whereas a malfare function

W(s;w) measures overall disutility s, and generically, we say an aggregator function
M(s;w) measures overall sentiment s. The prototypical example is the utilitarian (or Benthamite) aggregate, defined as
M1 (s;w) � s ·w , which simply averages sentiment across the population (e.g., welfare as per-capita income, or malfare
as per-capita medical expenditure), and the second-fiddle is the egalitarian (or Rawlsian) welfare W−∞ (s;w) (minimum)

1Often Y′ = Y, such as in standard classification and regression settings, but this is not universally the case. For instance, in probabilistic classification
or regression (i.e., conditional density estimation), Y′ is a space of distributions over Y, and in interval estimation, Y′ is a space of sets over Y.
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or malfare

W

∞ (s;w) (maximum), which summarizes a population’s sentiment as that of its most disadvantaged member.
We assume throughout thatw ∈ (0, 1)6 is a probability vector, thus ‖w ‖1 = 1, and s ∈ R60+ is nonnegative. Ab initio, our
first objective is, via the social planner’s problem, to maximize welfare [15, 22, 28, 38, 44], or by extension (e.g., in chores
manna or harm allocation [25, 29], or in machine learning [1, 14]) to minimize malfare, i.e., we seek to approximate

ℎ★ � argmin
ℎ∈H

W

(
8 ↦→ E

D8

[ℓ ◦ ℎ];w
)

, or ℎ★ � argmax
ℎ∈H

W

(
8 ↦→ E

D8

[u ◦ ℎ];w
)

. (1)

Intuitively, the utilitarian case seeks to optimize overall or average sentiment, whereas the egalitarian case instead seeks
to lift up the most disadvantaged group, and thus promote equality, perhaps at the expense of overall (total) utility.

Notably, welfare maximization generalizes utility maximization to multiple groups, and malfare minimization
likewise generalizes risk minimization, and the well-studied minimax fair learning framework arises as the special-case
of egalitarian malfare minimization. In general, we assume only monotonicity and continuity of aggregator functions;
however, there are a set of relatively standard axioms that, when taken together, restricts the class of interest to the
power-mean family [14]. This is convenient, as all power-mean malfare functions are Lipschitz-continuous, which in §4
leads to stronger estimation guarantees and more efficient sampling algorithms than Y-X limit-continuity.

Definition 2.1 (Axioms of Cardinal Welfare and Malfare). Suppose an aggregator function M(s;w). For each item,
assume (if necessary) that the axiom applies for all s, s′ ∈ R60+, scalars U, V ∈ R0+, and probability vectorsw ∈ (0, 1)6.
1) Strict Monotonicity: s′ ≠ 0 =⇒ M(s;w) < M(s + s′;w).
2) Weighted Symmetry: Suppose 6′ ∈ Z+, s′ ∈ R6

′

0+ , and probability vectorw′ ∈ (0, 1)6′, such that for all D ∈ R0+, it holds
that

∑
8 s.t. s8=D w8 =

∑
8 s.t. s′

8
=D w

′
8
. Then M(s;w) = M(s′;w′).

3) Continuity: M(s;w) is a continuous function (in the standard Y-X limit-continuity sense) in both s andw .
4) Independence of Unconcerned Agents: M(〈s1:6−1, U〉;w) ≤ M(〈s′1:6−1, U〉;w) =⇒M(〈s1:6−1, V〉;w) ≤ M(〈s′1:6−1, V〉;w).
5) Multiplicative Linearity: M(Us;w) = UM(s;w).
6) Unit Scale: M(1;w) = M(〈1, . . . , 1〉;w) = 1.
7) Pigou-Dalton Transfer Principle: Suppose ` = w · s = w · s′, and for all 8 ∈ Z: |` − s′

8
| ≤ |` − s8 |. Then for utility and

welfare, W(s′;w) ≥ W(s;w), and for disutility and malfare,

W(s′;w) ≤ W(s;w).

Axioms 1–4 are essentially the standard axioms of cardinal welfare [37, 40], modified to include the weightsw , and
omitting any of them leads to rather perverse aggregator functions. Axiom 5 (multiplicative linearity) strengthens the
traditional independence of common scale axiom, and ensures that the units of welfare or malfare must match those of
sentiment, and axiom 6 (unit scale) merely specifies a multiplicative constant. Finally, axiom 7, the Pigou-Dalton transfer

principle [17, 36], characterizes fairness in the sense of equitable redistribution of utility (welfare) or disutility (malfare).

Theorem 2.2 (Aggregator Function Properties [14, thms. 2.4 and 2.5]). Suppose aggregator function M(s;w), and
assume arbitrary sentiment vector s ∈ R60+ and probability vectorw ∈ (0, 1)6 . The following then hold.
1) Power-Mean Factorization: Axioms 1–6 imply ∃? ∈ R s.t.

M(s;w) = M? (s;w) � 5 −1?

(∑
8∈Z

w8 5? (s8 )
)
=?≠0

?

√
6∑
8=1
w8 s

?

8
, with

{
? = 0 50 (G) � ln(G)
? ≠ 0 5? (G) � sgn(?)G? .

2) Fair Welfare and Malfare: Axioms 1–7 imply ? ∈ (−∞, 1] for welfare and ? ∈ [1,∞) for malfare.
3) Lipschitz-Continuity: For all ? ≥ 1, it holds that

��M? (s;w) −M? (s′;w)
�� ≤ M? ( |s − s′ |;w) ≤ ‖s − s′‖∞.

In closing, we note that utilitarian philosophy is often criticized for permitting great inequality by ignoring the needs
of smaller or less visible groups, whereas egalitarian philosophy is criticized for ignoring the masses in favor of outliers
and disadvantaged groups, and its inherent susceptibility to minority rule. Concretely, utilitarian aggregates only
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weakly satisfy the Pigou-Dalton principle, thus do not incentivize equitable redistribution, and egalitarian aggregates
satisfy only weak monotonicity, thus only incentivize gains in the most disadvantaged group(s). Power-means provide a
spectrum of intermediaries, so exactly how tradeoffs should be made may depend on the application, as well as the
culturosocietal values of the social planner. They are also statistically convenient, as many of our estimation guarantees
hold in terms of generic Lipschitz-continuity assumptions, and thus apply to any power-mean malfare function.

Malfare of Regret. Regret measures the relative dissatisfaction of group 8 with some ℎ ∈ H , relative to their preferred
h★

8
∈ H . We define the (per-group) preferred outcome h★

8
as the model group 8 would select for themselves, i.e.,

h★

8 � argmin
ℎ∈H

E
D8

[ℓ ◦ ℎ] or h★

8 � argmax
ℎ∈H

E
D8

[u ◦ ℎ] , (2)

for loss or utility, respectively, and we let s★
8
denote the optimal expected sentiment for group 8 , i.e., s★

8
� ED8

[s ◦ h★

8
].

We now formally define the regret of group 8 on some outcome or model ℎ ∈ H as

Reg8 (ℎ) � ED8

[ℓ ◦ ℎ] − s★8 , Reg8 (ℎ) � s★8 − ED8

[u ◦ ℎ] , or generically, Reg8 (ℎ) �
�� E
D8

[s ◦ ℎ] − s★8
�� . (3)

Intuitively Reg8 (ℎ) is nonnegative, and it quantifies the amount by which group 8 prefers their optimal h★

8
to ℎ.

Several authors [7, 39] minimize the worst-case (over groups) regret of the selected ℎ̂, and the statistical and
computational questions that arise are studied under the umbrella of “multi-group agnostic PAC learning.” We generalize
this notion, optimizing not just worst-case (i.e., egalitarian), but arbitrary malfare functions, of per-group regret values,
which allows for greater flexibility and resistance to the usual issues of egalitarian malfare. In particular, we seek

ℎ★ � argmin
ℎ∈H

W(
8 ↦→ Reg8 (ℎ);w

)
= argmin

ℎ∈H
W(

8 ↦→
�� E
D8

[s ◦ ℎ] − s★8
��;w)

. (4)

Curiously, since we seek to measure overall regret, and regret is a nonnegative quantity with negative connotation, we
always summarize it with a malfare function

W(·;w), even when we began with a utility function. Intuitively, this is
because we can never hope to select a shared function ℎ̂ that group 8 prefers to h★

8
, thus excess dissatisfaction is always

positive in both the loss and utility cases. In some sense, the malfare of regret thus measures the price of sharing in a
society, as the shared model ℎ̂ is naturally compared [23, 49] to letting each group select their own model ℎ̂8 .

Previous work summarizes regret across groups by taking the largest regret amongst them. This is analogous to
game-theoretic regret (i.e., the maximum over agents of utility differences at adjacent profiles), but even there, any
malfare function could reasonably aggregate per-group regret values. We argue that considering only egalitarian regret

may act as an enforcer of the status quo, if one group is particularly happy with their h★

8
and is thus aggrieved by any

compromise — perhaps best summarized by the adage, “To those accustomed to privilege, equality feels like oppression.”
We mitigate this issue by summarizing regret with a power-mean malfare function

W

? (·;w), instead of the egalitarian
malfare, in order to lessen the impact of the most aggrieved group. In particular, this class smoothly and nonlinearly
interpolates between the worst-case (egalitarian)

W

∞ (·;w) regret and the utilitarian M1 (·;w) welfare or malfare.
Fascinatingly, we find that utilitarian regret minimization reduces to utilitarian malfare or welfare optimization, as all

terms involving per-group optimal sentiment can be factored into an additive constant from these objectives; observe

W

1
(
8 ↦→ Reg8 (ℎ);w

)
=

W

1

(
8 ↦→

���� ED8

[s ◦ ℎ] − s★8

����;w)
=

������©­«
∑
8∈Z

w8 ED8

[s ◦ ℎ]ª®¬ −w · s★
������ =


s = ℓ

W

1
(
ED8
[ℓ ◦ ℎ];w

)
−w · s★

s = u w · s★ −W1
(
ED8
[u ◦ ℎ];w

)
,
(5)
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namely s★ appears only in the additive constantw · s★, which is independent of ℎ. From this perspective, we conclude
that while the utilitarian regret is not particularly interesting, the power-mean malfare of regret interpolates between
minimizing largest regret, with its minority rule issues, and optimizing utilitarian welfare or malfare.

2.2 Three Sampling Models for Populations with Multiple Groups

In order to study efficient sampling, we must first quantify the cost of a sampling-based estimation routine, which
requires a sampling model. Within a single-group population, methods like i.i.d. sampling, importance sampling, or
sampling without replacement are near-ubiquitous, and all can measure cost as sample size< ∈ Z+; however, in group-
sensitive settings, we must consider how samples from different groups are obtained, and what the cost of collecting
these samples is. We do not argue for a one-size-fits-all analysis, but rather we discuss three sampling models, and
show that they fit key applications in the computer science domain and beyond.

1) Joint Sampling: Each i.i.d. sample contains a piece of information for each of the6 groups, with arbitrary dependencies
between groups. For example, per-group representatives could be shown a shared G ∈ X and asked for their feedback,
which would then be used to establish some Y8 for each group 8 . Thus each sample is in the space X × Y6 if the X
components are shared between groups, or more generally in (X × Y)6 . This setting also arises in multi-objective

reinforcement learning [15, 44], as well as various bandit problems and empirical game theoretic analysis [48], where
each query of an action or strategy profile yields a sample of the utility values of each player, agent, or group.
2) Mixture Sampling: For each sample, the data are only relevant to a nonempty subset of groups z ∈ 2Z, thus samples
are elements of X ×Y × 2Z. This generality is useful for studying concepts like intersectionalism and multicalibration

[39], where individuals may belong to multiple groups, but the case of mutually exclusive groups (i.e., each sample
belongs to exactly one group) is also convenient [23]. This model naturally represents a mixed population being sampled
i.i.d., where the group identities of the sample are left up to chance (i.e., roughly proportional to group frequencies),
and is thus the most appropriate model for learning from existing datasets [14] with group identity features [21].
3) Conditional Sampling: Here we actively choose fromwhich group to sample, in contrast to the mixture sampling model,
where we simply cast our net and “get what we get.” In particular, we sample i.i.d. (X,Y) pairs conditioned on some
group 8 ∈ Z, thus we may select sample sizes m1:6 ∈ Z6+ and draw a sample (x,~) ∈ (X × Y)m1 × · · · × (X × Y)m6.
This is a natural model in active sampling [1] and scientific inquiry settings, where initial results guide further study
and resource expenditure, and similar conditional sampling structure arises in stratified sampling settings.

In mixture sampling, we generally assume unit cost � = 1 per sample, and in joint sampling, we assume constant cost
� > 1 per joint-sample, as it is more expensive to set up a properly controlled joint sampling distribution. On the other
hand, in conditional sampling, some groups may be more difficult or costly to study than others, so we assume a cost
model I1:6 ∈ R6+ , where I8 is the per-sample cost for group 8 , thus the total cost of a sample with per-group sizes m1:6

is m · I . Note that the extra control of the conditional sampling model is extremely convenient and powerful, however
it is generally more expensive than mixture sampling. These costs are entirely application dependent, so we take no
stance on which is preferable, and rather focus on developing efficient learning algorithms under each sampling model.

3 STATISTICAL ANALYSIS AND ESTIMATION GUARANTEES

In this section, we discuss the statistics of estimating malfare and welfare functions. In particular, given a setZ of 6
groups, we want to estimate the malfare, welfare, or regret of per-group expected sentiment of some ℎ, i.e.,

M̂ ≈M
(
8 ↦→ E

D8

[s ◦ ℎ];w
)
, or M̂ ≈M

(
8 ↦→ Reg8 (ℎ);w

)
,
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where D1:6 are distributions over X × Y, and M(·;w) generically represents some aggregator function. Estimating the
expected loss or utility of one group is a well-studied sampling problem, but generalizing to the welfare, malfare, or
regret of multiple groups introduces some subtleties. We start by noting that while the empirical mean is an unbiased
estimator of expected utility or loss of a single group, in general there is no unbiased estimator of welfare or malfare
(essentially due to their nonlinear nature, much like with the standard deviation). Thus rather than unbiased estimators,
we seek additive error (AE) bounds of the form P

(
|M − M̂| ≤ Y

)
≥ 1 − X , where Y is the confidence radius (a.k.a. the

margin of error ), and X is the failure probability (or, by alternative convention, 1 − X is the level of confidence).
In machine learning, we optimize over a hypothesis class H ⊆ X → Y′, thus we seek some sample-dependent ℎ̂ ∈ H

with true objective value within Y of that of the optimal ℎ★ ∈ H . At times, we are also interested in related statistics, like
the objective values of ℎ̂ and ℎ★, and in general, tools to bound the deviations between the empirical and true objective
values for any ℎ ∈ H are sufficient to bound these quantities. The rest of this section pursues such bounds, assuming
a fixed failure probability X and sample size m8 for each group 8 ∈ Z. In particular, §3.1 reviews known results for
uniformly estimating expectations across H , §3.2 builds upon these results to uniformly estimate malfare, welfare,
and regret values, and §3.3 then studies how varying per-group sentiment values and confidence radii impacts these
bounds, and quantifies the incremental value of sampling from each group as a function of these quantities.

3.1 Uniform Convergence Bounds for Mean Estimation

In this work, the common functional form of our additive error (AE) bounds is data-dependent uniform-convergence,
vectorized to operate over samples from multiple groups, rather than on a single-group sample. Occasionally, we are
interested in the scalar form AES(<,X, x,~) : Z+× (0, 1) ×X< ×Y< → R0+, which operates on a single group, but unless
otherwise stated, we refer to the vector boundAEV(m, X, x,~) : Z6+×(0, 1)×(Xm1×· · ·×Xm6 )×(Ym1×· · ·×Ym6 ) → R0+.
In particular, given a sample (x,~) ∼ Dm1

1 × · · · × Dm6

6 , we require a function2 AEV(. . . ) such that

9̂ ← AEV(m, X, x,~) =⇒ P
x,~,9̂

(
max
8∈Z

sup
ℎ∈H

���� Êx8,:,~8,:
[s ◦ ℎ] − E

D8

[s ◦ ℎ]
���� − 9̂8 > 0

)
< X . (6)

The supremum term in (6), known as the supremum deviation, measures the largest difference overH between empirical
and true sentiment. Section 3.2 explores how AEV(m, X, x,~) can be used to bound malfare, welfare, and regret, and the
remainder of this subsection is dedicated to showing nontrivial bounds of this form for machine learning applications.
All of our AE bounds assume bounded sentiment range A � sup~′∈Y′,~∈Y s(~′, ~), but this can usually be relaxed if we
instead assume a moment condition, e.g., each s ◦ ℎ is sub-Gaussian, sub-exponential, sub-gamma, or sub-Poisson [8].

Data-dependent uniform-convergence bounds, i.e., those of the form AES(<,X, x,~), are invaluable for studying a
population about which little is known. Such bounds require data to evaluate, thus we cannot determine a priori how
much data will be required to meet a given confidence radius. This contrasts distribution-free bounds, which must have
worst-case dependence on the distribution, and take the form AES(<,X) ≤ sup(x,~ ) ∈ (X×Y)< AES(<,X, x,~). In §4,
when constructing schedules for progressive sampling, we often assume knowledge of AES(<,X), but this is usually
possible via this worst-case RHS bound. We first present simple bounds for bounded finite hypothesis classes, which
depend on the sentiment range A , hypothesis class size |H |, variances V[·], and empirical variances V̂[·].

2 Going forward, we present only scalar bounds, but it is to be understood that given an additive error scalar bound AES(. . . ) and a finite group count 6,
we may construct the additive error vector bound AEV(m, X, x,~ ) ←

〈
AES(m1,

X
6 , x1,:,~1,: ), . . . ,AES(m6,

X
6 , x6,:,~6,: )

〉
via the union bound.
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Theorem 3.1 (Uniform Convergence for Bounded Finite Hypothesis Classes). We may bound the distribution-free
AES(<,X), the distribution-dependent AESD (<,X), and the data-dependent AES(<,X, x,~) scalar additive error as

1)Y ←

√
A 2 ln 2|H|

X

2< [27] ; 2)Y ← A ln 2|H|
X

3< + sup
ℎ∈H

√
2VD [s◦ℎ] ln 2|H|

X

< [6] ; & 3) Ŷ ← 7A ln 2|H|+1
X

3(<−1) +
sup
ℎ∈H

√
2 V̂x,~ [s◦ℎ] ln 2|H|+1

X

(<−1) [16] .

Note that supremum variances and empirical variances are properties of the distribution and sample, respectively.
Dependence on variance is necessary (similar terms appear in mean-estimation lower-bounds [19, 32]), however the
ln|H | union bound terms are loose, and the bounds are vacuous for infinite (continuous)H . We now state results using
Rademacher averages [5, 42] that tolerate infiniteH , while preserving the variance-dependence of item 2.

Theorem 3.2 (Uniform Convergence with Rademacher Averages). Suppose hypothesis classH and sentiment function
s(·, ·), take (x,~) ∼ D< and 2 ∼ U< (±1), i.e., 2 is uniformly distributed on (±1)<, and define the Rademacher average

R< (s ◦ H ,D) and Bousquet variance proxy V< (s ◦ H ,D) [see 9] as

R< (s ◦ H ,D) � E
x,~,2

[
sup
ℎ∈H

���� 1< <∑
8=1

28 (s ◦ ℎ) (x8 ,~8 )
����] , V< (s ◦ H ,D) � sup

ℎ∈H
V
D
[s ◦ ℎ] + 4AR< (s ◦ H ,D) . (7)

We may then bound AESD (<,X) as Y ← 2R< (s ◦ H ,D) + A ln 1
X

3< +
√

2V< (s◦H,D) ln 1
X

< .

Data-dependent analogs of thm. 3.2 are possible using empirical Rademacher averages and variances at no asymptotic
cost [16]. In the worst case, thm. 3.2 performs comparably to thm. 3.1 item 2, however it improves when correlations

exist between elements ofH , because the effective size ofH is smaller for the purposes of realizing the supremum in
the Rademacher average, see (7). The abstract inequalities of thm. 3.2 are quite opaque, so we now provide concrete
bounds on the Rademacher averages of practical infinite hypothesis classes. The below results hold for any distribution

D, and are thus distribution-free, although similar distribution-dependent or data-dependent bounds are possible.

Property 3.3 (Practical Bounds on Rademacher Averages). Suppose as in thm. 3.2. The following then hold.
1) SupposeH has Vapnik-Chervonenkis (VC) dimension 3 [46, 47], and ℓ (~′, ~) � 1−1{~} (~′) is the 0-1 loss. Then for
some absolute constant 2 , R< (ℓ ◦ H ,D) ≤

√
23
< , which implies bounds for linear classifiers, bounded-depth decision

trees [31], and many classes of neural network [2].
2) SupposeX � {®G ∈ R∞ | ‖ ®G ‖2 ≤ '} is the'-radiusL2 ball inR∞,H � {®G ↦→ ®F · ®G | ‖ ®F ‖2 ≤ W} is aW-regularized linear
class, Y � [−'W, 'W], and ℓ (·, ·) is a _-Lipschitz loss function s.t. ℓ (~,~) = 0. Then A ≤ 2_'W and R< (ℓ ◦H ,D) ≤ 2_'W√

<
.

This implies bounds for (kernelized) SVM, generalized linear models [35], and bounded linear regression.

3.2 From Mean Estimation to Welfare, Malfare, and Regret Bounds

We now adapt the AE bounds of §3.1 on expectations to bound malfare, welfare, and regret in terms of empirical
estimates thereof. In particular, the strategy for each is to combine tail bounds for mean-estimation with themonotonicity

axiom (def. 2.1 item 1) to bound the tails and expectations of our desiderata. We use the uniform convergence bounds
of §3.1 to bound the error of these estimates, thus we need only propagate this uncertainty through the appropriate
aggregator functions. In general, aggregator functions are nonlinear, and optimizing overH results in estimation bias,
thus the plug-in estimator is biased, however, we still obtain tail bounds on our objectives via AEV(. . . ). Because the
plug-in estimator is biased, we also consider various LCB-and-UCB-style estimates, which when optimized yield safer
function choices and partially control for overfitting. Finally, in some cases, integrating over worst-case uncertainty from
the tail bounds of AEV(. . . ) yields convenient bounds on the expectation (and thus the bias) of the plug-in estimator.

7
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Welfare and Malfare. Due to the lack of an unbiased estimator for welfare and malfare, we study the simple plug-in
estimator M̂, as employed by [14], and introduce a pair of lower and upper estimators (M̂↓

, M̂↑). In particular, we take

M̂ �M
(
8 ↦→ Ê

x8,:,~8,:
[s ◦ ℎ];w

)
︸                         ︷︷                         ︸

Plug-In Estimate

, M̂↓
�M

(
8 ↦→ 0 ∨ Ê

x8,:,~8,:
[s ◦ ℎ] − 9̂8 ;w

)
︸                                    ︷︷                                    ︸

LCB Estimate

, & M̂↑
�M

(
8 ↦→ 2 ∧ Ê

x8,:,~8,:
[s ◦ ℎ] + 9̂8 ;w

)
︸                                    ︷︷                                    ︸

UCB Estimate

,

(8)
where ∨ and ∧ are the (minimum precedence) infix binary max and min operators. By monotonicity (axiom 1), it holds
that M̂↓ ≤ M̂ ≤ M̂↑. The lower and upper confidence bound estimates are convenient, both to show high probability
bounds, and to sandwich the plug-in estimator, which we use to bound its bias. We first show tail bounds for the
estimation of welfare and malfare in terms of their plug-in, LCB, and UCB estimates, and we then bound the bias of M̂.

Theorem 3.4 (Welfare and Malfare Tail Bounds). Suppose sentiment function s(·, ·) : Y′ × Y → R0+, per-group
probability distributions D1:6 , sample size vector m ∈ Z6+ , samples (x,~) ∼ Dm1

1 × · · · × Dm6

6 , failure probability
X ∈ (0, 1), and additive error bound AEV(. . . ), and let 9̂ ← AEV(m, X, x,~). Then for all ℎ ∈ H and all monotonic
aggregator functions M(·;w), it holds with probability at least 1 − X over x , ~, and 9̂ that

M
(
8 ↦→ 0 ∨ E

D8

[s ◦ ℎ] − 9̂8 ;w
)

︸                                 ︷︷                                 ︸
True LB

≤ M
(
8 ↦→ Ê

x8,:,~8,:
[s ◦ ℎ];w

)
︸                          ︷︷                          ︸

Plug-In Estimate M̂

≤ M
(
8 ↦→ 2 ∧ E

D8

[s ◦ ℎ] + 9̂8 ;w
)

︸                                 ︷︷                                 ︸
True UB

, & (9)

M
(
8 ↦→ 0 ∨ Ê

x8,:,~8,:
[s ◦ ℎ] − 9̂8 ;w

)
︸                                      ︷︷                                      ︸

LCB Estimate M̂↓

≤ M
(
8 ↦→ E

D8

[s ◦ ℎ];w
)

︸                      ︷︷                      ︸
True Aggregate M

≤ M
(
8 ↦→ 2 ∧ Ê

x8,:,~8,:
[s ◦ ℎ] + 9̂8 ;w

)
︸                                     ︷︷                                     ︸

UCB Estimate M̂↑

, (10)

thus if M(·;w) is _-Lipschitz-continuous w.r.t. some norm ‖·‖M, we have����M (
8 ↦→ Ê

x8,:,~8,:
[s ◦ ℎ];w

)
︸                          ︷︷                          ︸

Plug-In Estimate

−M
(
8 ↦→ E

D8

[s ◦ ℎ];w
)

︸                      ︷︷                      ︸
True Aggregate

���� ≤ _‖9̂‖M . (11)

From (10), we see that minimizing M̂↑ (or maximizing M̂↓) is in some sense a safe choice, as w.h.p. we can bound the
true aggregate value in terms of the UCB or LCB. This idea is reminiscent of the sample variance penalization algorithm
of [34], wherein ERM is supplanted by minimizing an upper-bound on risk; in that case with variance-dependent bounds,
but here the bound depends on the structure of the malfare or welfare objective at hand. It should also be noted that
while the final Lipschitz form (11) is concise and convenient for all Lipschitz-continuous aggregator functions (e.g.,
all ? ≥ 1 power-mean malfare functions, see thm. 2.2 item 3 ), it can be quite loose. For example, under ± uncertainty
intervals, the egalitarian welfare W−∞ (〈4±1, 9±8〉;w)=min(4±1, 9±8) must be on the interval 3±2, despite (11) giving
confidence radius 8. Thus while (11) is convenient for intuition and analysis, when possible (9) or (10) should be favored.

Theorem 3.5 (Welfare and Malfare Expectation Bounds). Suppose as in thm. 3.4, and assume also thatAEV(m, X, x,~) =
AEV(m, X) is a distribution-free or distribution-dependent (but not data-dependent) bound. Then

|M − E[M̂] | ≤ E [|M − M̂|] ≤ _
w 1

0
‖AEV(m, X)‖M dX .

The above theorems give general recipes for bounding tails and expectations, so for demonstrative purposes, we
instantiate them with thm. 3.1 for malfare estimation. Similar bounds can be derived for learning with thm. 3.2.

Corollary 3.6 (Bernstein-Type Malfare Bounds). Suppose as in thm. 3.1, and also per-group sample size < (i.e.,
m = 〈<, . . . ,<〉) and ? ≥ 1 power-mean malfare function

W

? (·;w). Now, let v8 � ED8
[s ◦ℎ], and define variance proxy

8
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E as E �
(∑

8∈Z w8
√
v8

)2 for ? = 1, E � w · v for ? ∈ (1, 2], or E � ‖v‖∞ for ? > 2. Then, for all X ∈ (0, 1), we have

1)P
(
| W− ˆ W| ≥ A ln 26

X

3< +
√

2E ln 26
X

<

)
≤ X ; 2)E[| W− ˆ W|]≤ A ln(246)

3< +
√
2E ln(246)

< ; & 3)

W≤E[ ˆ W] ≤ W+ A ln(46)3< +
√
2E ln(46)

< .

Estimating the Malfare of Regret. Regret is difficult to bound, as it depends both on the expected sentiment of the
selected ℎ̂, and also onH through the (unknown) per-group optimal sentiments s★1:6 . We thus introduce the estimators

ŝ8 � inf
ℎ∈H

Ê
x8,:,~8,:

[ℓ ◦ ℎ] , or ŝ8 � sup
ℎ∈H

Ê
x8,:,~8,:

[u ◦ ℎ] , (12)

for loss or utility, respectively, cf. (2). By analogy with (3), the plug-in estimator for the regret malfare minimizer is then

ℎ̂ � argmin
ℎ∈H

W

(
8 ↦→

���� Êx8,:,~8,:
[s ◦ ℎ] − ŝ8

����;w)
. (13)

The following theorem bounds the difference between the true and empirical malfare of regret.

Theorem 3.7 (Regret Estimation Bounds). Suppose sentiment function s(·, ·) : Y′ × Y → R0+, per-group probability
distributions D1:6 , sample size vector m ∈ Z6+ , samples (x,~) ∼ Dm1

1 × · · · × Dm6

6 , failure probability X ∈ (0, 1), and
additive error bound AEV(. . . ), and let 9̂ ← AEV(m, X, x,~). Then for all ℎ ∈ H and all monotonic malfare functions

W(·;w), it holds with probability at least 1 − X over x , ~, and 9̂ that

W

(
8 ↦→ 0 ∨

���� ED8

[s ◦ ℎ] − s★8

���� − 29̂8 ;w)︸                                         ︷︷                                         ︸
True Regret Malfare LB

≤ W

(
8 ↦→

���� Êx8,:,~8,:
[s ◦ ℎ] − ŝ8

����;w)︸                                ︷︷                                ︸
Plug-In Regret Malfare

≤ W

(
8 ↦→ 2 ∧

���� ED8

[s ◦ ℎ] − s★8

���� + 29̂8 ;w)︸                                        ︷︷                                        ︸
True Regret Malfare UB

, & (14)

W

(
8 ↦→ 0 ∨

���� Êx8,:,~8,:
[s ◦ ℎ] − ŝ8

���� − 29̂8 ;w)︸                                            ︷︷                                            ︸
LCB Estimate

≤ W

(
8 ↦→

���� ED8

[s ◦ ℎ] − s★8

����;w)︸                            ︷︷                            ︸
True Regret Malfare

≤ W

(
8 ↦→ 2 ∧

���� Êx8,:,~8,:
[s ◦ ℎ] − ŝ8

���� + 29̂8 ;w)︸                                           ︷︷                                           ︸
UCB Estimate

, (15)

thus if
W(·;w) is _-Lipschitz-continuous w.r.t. some norm ‖·‖ W, we have���� W

(
8 ↦→

���� Êx8,:,~8,:
[s ◦ ℎ] − ŝ8

����;w)
︸                                 ︷︷                                 ︸

Plug-In Regret Malfare

− W

(
8 ↦→

���� ED8

[s ◦ ℎ] − s★8

����;w)
︸                              ︷︷                              ︸

True Regret Malfare

���� ≤ 2_‖9̂‖ W. (16)

Note that similar bounds on the expectation of the regret plug-in estimator can be shown along the lines of coro. 3.6,
mutatis mutandis for regret. Note also that thm. 3.7 matches thm. 3.4 up to a 2-factor attached to the confidence radius,
thus in some sense regret is “about twice as difficult” to estimate as malfare or welfare.

3.3 Information Asymmetry and Where Best to Sample

An intuitive notion of fairness would suggest that we should draw equally-sized samples for each group, or perhaps
samples proportional to population frequencies. If the goal is to optimize or bound welfare, malfare, or regret, such
intuitive notions should be rejected, as they are critically flawed. We now discuss the ways in which samples drawn
from one group or another may be more or less valuable to for the purposes of estimating or optimizing these objectives.

As a brief thought experiment, suppose that we want to estimate the egalitarian welfare of a population consisting
of two groups, with expected utilities 〈1, 10〉 that are similarly difficult to estimate. In such a setting, nearly all sampling
effort should be invested in estimating the utility of group one, as once group two is estimated to within ±9 AE, there is
no further benefit to improving their estimate. Thus the optimal sampling strategy depends on the true expected utilities,
the difficulties of estimating utilities for each group, and the objective in question, and in no way resembles the naïve
uniform or proportional so-called “fair sampling strategies” described above. We argue that such naïve strategies are

9
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dangerous, as they introduce subtle biases and fairness issues, but the rationale for alternative sampling strategies is
only apparent through the lens of sample complexity.

We now ask the questions, “Given a sample, what do we need to obtain sharper bounds?” and “How much will
bounds improve with a larger sample?” We begin with a soft discussion as to why samples from different groups may
contribute more or less information to an estimate, which we measure as the improvement to tail bounds that additional
samples may yield. In particular, for malfare, we discuss the improvement to upper bounds, but the entire discussion can
be directly translated to welfare and lower bounds in the usual manner. We then quantify these factors mathematically,
and we develop these ideas further in §4.2, where they are used to adaptively choose from which group to sample.

1) Variable estimation difficulty or overfit potential: Often it is inherently more difficult to give bounds on the expected
sentiment for some groups than for others. This can be due to differences in variances (see thm. 3.1) or in uniform
convergence bounds (see thm. 3.2), and in general, occurs when 9̂ ← AEV(. . . ) has 9̂8 � 9̂ 9 , even while m8 ≈ m 9 .
2) Variable task difficulty: Some groups may be inherently easier or harder to satisfy than others; e.g., regression and
classification problems are generally easier for groups with labels that are more homogeneous, and regret varies with
the optimal expected sentiment s★

8
. This is crucial, because most malfare and welfare functions are more sensitive3 to

high-risk or low-utility groups, thus the ease of satisfying a group effects their impact on malfare and welfare values.
3) Aggregator function interactions: Complicated interactions also occur through the malfare or welfare function. When
learning overH , the set of near-optimal functions is more relevant than those that are clearly bad choices overall, and
groups that tend to be mutually satisfied (i.e., are correlated) are less impactful to the overall objective. Weight values in
malfare or welfare functions may also differ between groups, and higher-weighted groups are usually more impactful.

Quantifying the Incremental Value of Sampling. We measure the impact of sampling by asking the question, “What is
the incremental value of a single sample drawn for some group?” In particular, we quantify the value of the sample
as the reduction in uncertainty, as measured by the infimum UCB (overH), and although this is inherently a discrete
question, we approximate the answer for the power-mean malfare with tools from the calculus of infinitesimals.

Note that all such analysis is necessarily heuristic, as we fundamentally cannot answer this question without more
information: it is precisely because we are trying to estimate unknown means that we can’t know how the samples we
draw will impact the empirical means. For now, we heuristically assume that our estimated expectations are reasonably
accurate, and consider what will happen as tail bounds sharpen with additional samples. The strategy we thus employ
is to make a reasonable guess as to how sampling might impact the UCB by assuming that the empirical mean will not
be strongly affected, and all confidence intervals over< samples will contract at a Θ

√
1
<

rate.

Property 3.8 (Incremental Gain of Sampling). Suppose power-mean malfare

W

? (·;w), sample (x,~) with group sample
sizes m1:6 , and let x′,~′ extend x,~ to sample sizes m′, where m′ = m + 18 , i.e., group 8 has one additional sample.
Now, let 9̂ ← AEV(m, X, x,~) and 9̃ ← AEV(m′, X, x′,~′), and take ℎ̂ � argminℎ∈H

W

?

(
8 ↦→ Êx8,:,~8,: [ℓ ◦ ℎ] + 9̂8 ;w

)
,

ˆ W�

W

?

(
8 ↦→ Êx8,:,~8,:[ℓ ◦ ℎ̂];w

)
, ˆ W↑ �

W

?

(
8 ↦→ Êx8,:,~8,:[ℓ ◦ ℎ̂]+9̂8 ;w

)
, and ˜ W↑ � infℎ∈H

W

?

(
8 ↦→ Êx′

8,:,~
′
8,:
[ℓ ◦ ℎ]+9̃8 ;w

)
.

Then the incremental impact of sampling from group 8 on the UCB is approximately

ˆ W↑ − ˜ W↑ ≈ 9̂8w8
2m8 + 3

2

(
Êx8,:,~8,: [ℓ ◦ ℎ̂] + 9̂8

ˆ W↑

)?−1
≈ 9̂8w8

2m8

(
Êx8,:,~8,: [ℓ ◦ ℎ̂]

ˆ W

)?−1
. (17)

Observe that (17) characterizes the knowledge gain of sampling from group 8 . This gain is proportional to the current
bound radius 9̂8 , the group weightw8 , and the (? − 1)th power of the ratio of the UCB risk of group 8 to the UCB malfare,
3Note that this holds for all ? ≠ 1 power-means, and is axiomatically codified by the Pigou-Dalton transfer principle (def. 2.1 item 7).
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i.e.,
(
Êx8,:,~8,: [ℓ ◦ ℎ̂] + 9̂8/ ˆ

W↑)?−1, and inversely proportional to the amount of effort m8 already put forth into studying
group 8 . These terms line up with the soft arguments at the top of §3.3 as to where sampling should occur, but it is
only via precisely studying sample complexity and estimation error that we gain quantifiable mathematical insight.
In particular, the weight term w8 appears directly, and 9̂8

m8
captures both the difficulty of estimating this group, and

also the diminishing incremental improvement produced by further sampling. The ratio between the risk of group 8

and the malfare then captures how important group 8 is relative to the other groups, and this term being raised to the
(? − 1)th power nonlinearly adjusts its impact; higher ? saturate high-risk groups, tending towards egalitarianism,
whereas in the ? = 1 (utilitarian) case, this term is 1. Finally, for optimization problems, the dependence on ℎ̂ captures
other dependencies; namely the behavior of

W(·;w) near the optimal ℎ ∈ H is what matters.
This analysis parallels concerns in stratified sampling, wherein subpopulations are sampled individually, generally to

produce an improved mean estimator. In particular, we suggest a form of disproportionate allocation, i.e., per-group
sample sizes are not necessarily proportional to their population frequencies. Rather than simply considering variances

to estimate means, we holistically consider the objective and uncertainty over various quantities, thus our sample-size
selection-strategy is a variant of the minimax sampling ratio [41] method. Chen et al. [12] also suggest disproportionate
allocation in fair learning, albeit only for bounding differences of per-group statistics. Similar concerns also arise in
optimizing minimax-fair models, wherein Abernethy et al. [1] present an algorithm that takes gradient steps to improve
a model for the highest-risk group, though it is unclear whether such methods generalize beyond the egalitarian case.

4 PROGRESSIVE AND ACTIVE SAMPLING ALGORITHMS

Section 3 considers fixed sample sizes m1:6 and failure probabilities X , and bounds the confidence radius Y. In this section,
we want a fixed Y-X AE guarantee, but we are willing to let an algorithm select the sample size< (or per-group sample
sizes m1:6). In particular, due to the cost of sampling and processing data, we want our algorithm to minimize< (or
cost measured as some function of m), while constraining Y and X to user-supplied levels. Some cases are simpler than
others; the joint sampling model yields a standard progressive sampling method with a fixed sampling schedule, and
the method under mixture sampling is similar, except a subtle conditioning argument allows us to use variably-sized
per-group sample sizes based on the order in which groups are sampled. For the conditional sampling model, we develop
an active sampling approach, which makes cost-sensitive decisions as to which group to sample at each iteration. More
details on sampling schedules and other aspects of our progressive sampling algorithms are given in appx. B.

We can’t simply draw samples one-by-one, compute bounds using 9̂ ← AEV(m, X, x,~) after each sample, and
terminate when a sufficiently sharp bound is available, because the possibility of early termination leads to the multiple

comparisons problem, wherein by chance the desired confidence radius is met at some timestep. Progressive sampling
algorithms correct for this by establishing a sampling schedule S and failure probability schedule �, which usually
dictate that, at timestep C , we take a tail-bound with X = �C and sample size SC , while ensuring that all bounds hold
simultaneously (by union bound) with probability at least 1 − X . Due to this union bound, it is inefficient to take bounds
after drawing every sample. Furthermore, for technical reasons, we henceforth assume a few mild regularity conditions:
1) The sampling schedule S ∈ Z∞+ is a strictly monotonically increasing sequence, i.e., for all C ∈ Z+, SC ≤ SC+1;
2) The failure probability schedule � ∈ [0, 1)∞ is a sequence that sums to some X ∈ (0, 1), i.e., ∑∞8=1 �C = ‖�‖1 = X ; &
3) The distribution-free bound supx,~ ‖AEV(m, X, x,~)‖ is monotonically decreasing in m1:6 and X for any norm ‖·‖.

In order to prove that a progressive sampling algorithm produces a (probabilistically) correct answer, it is crucial to
show that it does not loop indefinitely. We now introduce Y-convergent schedules, which require all sentiment values
to eventually be Y-X estimated w.r.t. some norm ‖·‖M, yielding welfare, malfare, or regret bounds via thms. 3.4 and 3.7.
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Definition 4.1 (Y-Uniformly-Convergent Schedule). For any Y ≥ 0, a sampling schedule S and failure probability
schedule � are Y-uniformly-convergent w.r.t. AEV(. . . ) and some norm ‖·‖M if

inf
C ∈Z+

sup
(x,~ ) ∈ (X×Y)SC ×6

‖AEV(〈SC , . . . , SC 〉,�C , x,~)‖M ≤ Y . (18)

Intuitively, def. 4.1 captures the idea that no matter how unlucky we are with the sampled x,~, if AEV(. . . ) bounds
tails once for each timestep C of the schedule, with per-group samples of size at least SC and failure probability �C , then
at some point an Y-estimate of the objective will be produced. Note that neither data-dependent AEV(. . . ) bounds on
sentiment values, nor sufficient per-group error radii to estimate the objective, are known a priori, thus it is not always
possible to select a sufficient static sample size, however, def. 4.1 is more flexible, as it requires only the existence of a
(possibly unknown) sufficient sample size. Even when a sufficient sample size is known, unless it is also necessary,
progressive sampling is usually more sample-efficient, often terminating closer to the necessary sample size.

With this definition in hand, we now construct finite Y-, and infinite 0-, uniformly-convergent schedules. In the
context of this work (see thms. 4.5 and 4.6), the finite schedule can be employed with a Lipschitz-continuous objective
and an a priori known distribution-free bound on AEV(. . . ), and when the objective is continuous, but not Lipschitz-
continuous, or the classH is uniformly-convergent, but at an unknown rate, the infinite schedule can still be used.
Both employ geometrically-increasing sample sizes, which are efficient because they never “overshoot” any sample size
by more than a constant factor, while covering a range of sample sizes that is exponential in the number of timesteps.

Definition 4.2 (Geometric-Uniform Schedule). Suppose optimistic size U ≥ 1, common ratio V > 1, and schedule length

) ∈ Z+. The geometric-uniform schedule then takes (geometric) SC � dUVC e and (uniform) �C �
X
)
11,...,) (C).

Definition 4.3 (Double-Geometric Schedule). Suppose optimistic size U > 0 and common ratio V > 1. The double-
geometric schedule then takes (geometric) SC � dUVC e and (geometric) �C �

X (V−1)
VC

.

Lemma 4.4 (Sufficient Conditions for Uniformly-Convergent Geometric Schedules). Suppose as in def. 4.2, and assume
sup

(x,~ ) ∈ (X×Y)S) ×6
‖AEV (〈S) , . . . , S) 〉, X) , x,~)‖M ≤ Y . (19)

Then the geometric-uniform schedule (S, �) is Y-uniformly-convergent. Furthermore, suppose as in def. 4.3, U ≥ 1
X

and
lim

<→∞
sup

(x,~ ) ∈ (X×Y)<×6
‖AEV (〈<, . . . ,<〉, V−1

V (<+1) , x,~)‖M = 0 . (20)

Then the double-geometric schedule (S, �) is 0-uniformly-convergent.

The initial and final sample sizes of the geometric-uniform schedule are S1 = dUVe and S) = dUV) e, and often one
can set S1/V and S) to minimal sufficient and maximal necessary sample sizes (as a function of) , the objective, and other
parameters). To maximize statistical efficiency while controlling the value of V , we may select the minimal ) such that
dlogV

S)
S1
e = ) .4 In particular, assuming a _-Lipschitz objective, the Hoeffding (item 1) and empirical Bernstein (item 3)

bounds of thm. 3.1 imply Y-uniformly convergent schedules via (19) of length ) ∈ Θ(log _A
Y ). For the double-geometric

schedule, we may similarly set S1/V to a minimal sufficient sample size, and here there is no ) parameter (the schedule
is infinite), thus we may simply select V as desired. This yields 0-uniformly convergent schedules, since each of the
bounds of thm. 3.1 satisfy (20), as do those of thm. 3.2, so long as lim<→∞max8∈ZR< (s ◦ H ,D8 ) = 0.

Both of the above schedule types are efficient, in the sense that for the smallest (per-group) static sample size<★ at
which we obtain the bound 9★, some <̂ ≤ dV<★e is contained in the schedule, and the bound 9̂ ← AEV(〈<̂, . . . , <̂〉, . . .)
exceeds 9★ only because it uses a smaller X value. In particular, assuming all bounds are Θ

√
D for D � ln 6

X
, we have

for each group 8 that 9★
8

9̂8
∈ Θ

√
D

log() )+D and 9★
8

9̂8
∈ Θ

√
D

log(<★)+D for the geometric-uniform and double-geometric
4The base-V logarithm arises intuitively, as the number of times the sample size must increase by a factor V to reach size S) from S1 .
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Algorithm 1 Fair Learning with Linear Progressive Sampling under the Joint and Mixture Sampling Models
1: procedure LinearPSLoss(H , ℓ (·, ·),D,AEV(. . . ), S,�, Y, W(·;w), Reg)→ (ℎ̂, ˆ̀, Ŷ, W

★↓)
2: input: Hypothesis classH ⊆ X → Y′, loss function ℓ (·, ·) : Y′ × Y → [0, 2], joint or mixture distribution D, additive error vector

bound AEV(m, X, x,~), schedule S ∈ Z∞+ and � ∈ [0, 1)∞, confidence radius Y, weighted malfare

W(·;w), and Boolean Reg
3: output: Empirically UCB-optimal ℎ̂, empirical malfare estimate ˆ̀, confidence radius Ŷ, and lower bound on minimal malfare

W

★↓

4: m1:6 ← 0; x1:6 ←
〈
〈〉, . . . , 〈〉

〉
; ~1:6 ←

〈
〈〉, . . . , 〈〉

〉
⊲ Initialize per-group sample counts, empty per-group sample lists

5: for C ∈ 1, 2, . . . do ⊲ Progressive sampling timesteps
6: if D is joint sampler then
7:

(
x1:6,SC−1+1:SC ,~1:6,SC−1+1:SC

)
∼ DSC−SC−1 ; ∀8 ∈ Z : m8 ← SC ⊲ Sample from joint distribution (assume S0 = 0)

8: else if D is mixture sampler then
9: while min8∈Z m8 < SC do

10: (G,~, z) ∼ D ⊲ Draw X ×Y × 2Z triplet (domain, codomain, groups)
11: ∀8 ∈ z : m8 ← m8 + 1; (x8,m8

,~8,m8
) ← (G,~) ⊲ Increment count m8 and store sample for each group 8 associated with (G,~)

12: end while
13: end if
14: 9̂1:6 ← (1 + 1Reg) AEV(m,�C , x,~) ⊲ Bound additive error of per-group supremum deviations (w.h.p.)
15: ∀8 ∈ Z : ŝ★8 ←

(
inf
ℎ∈H

Ê
x8,:,~8,:

[ℓ ◦ ℎ]
)
if Reg else 0 ⊲ Estimate regret baseline as per-group minimal empirical risks (if applicable)

16: ℎ̂ ← argmin
ℎ∈H

W(
8 ↦→ 2 ∧ Ê

x8,:,~8,:
[ℓ ◦ ℎ] − ŝ★8 + 9̂8 ;w

)
⊲ Compute UCB-optimal ℎ̂

17:

W★↓ ← inf
ℎ∈H

W(
8 ↦→ 0 ∨ Ê

x8,:,~8,:
[ℓ ◦ ℎ] − ŝ★8 − 9̂8 ;w

)
⊲ Lower-bound optimal

W

★

18: ( ˆ W↓, ˆ W↑) ←
( W(

8 ↦→ 0 ∨ Ê
x8,:,~8,:

[ℓ ◦ ℎ̂] − ŝ★8 − 9̂8 ;w
)
,

W(
8 ↦→ 2 ∧ Ê

x8,:,~8,:
[ℓ ◦ ℎ̂] − ŝ★8 + 9̂8 ;w

) )
⊲ LCB and UCB on ℎ̂ (regret) malfare

19: if ˆ W↑ ≤ W

★↓ + 2Y then ⊲ Check if desired error guarantee is met (termination condition)
20: ( ˆ̀, Ŷ) ←

(
1
2 ( ˆ

W↓ + ˆ W↑), 12 ( ˆ

W↑ − ˆ W↓)
)

⊲ Symmetric estimate ˆ̀ and confidence radius Ŷ of (regret) malfare of ℎ̂

21: return
(
ℎ̂, ˆ̀, Ŷ,

W

★↓) ⊲ Return UCB-optimal ℎ̂, Ŷ-estimate of

W(·;w), and lower-bound on optimal malfare

W

★↓

22: end if
23: end for
24: end procedure
25: procedure LinearPSUtility(H , u(·, ·),D,AEV(. . . ), S,�, Y,M(·;w), Reg)→ (ℎ̂, ˆ̀, Ŷ,M★↑)
26: input: Utility function u(·, ·) : Y′ ×Y → [0, 2], weighted aggregator function M(·;w) (malfare if Reg, otherwise welfare), see line 2
27: output: Empirically LCB-optimal ℎ̂, empirical welfare ˆ̀, confidence radius Ŷ, and UB on maximal welfare M★↑ (or similar for regret)
28: (ℎ̂, ˆ̀, Ŷ,M★↑) ← LinearPSLoss(H , 2 − u(·, ·),D,AEV(. . . ), S,�, Y, (21Reg − 1)M(s8 ↦→ 2 − s8 ;w), Reg) ⊲ Negate to flip inf and sup
29: return

(
ℎ̂, 2 − ˆ̀, Ŷ, (21Reg − 1)M★↑) ⊲ Invert negation (as applicable)

30: end procedure

schedules, respectively. Note also that log() ) ∈ Θ(log log A_
Y ), whereas log(<★) ∈ O(log A_D

Y ), thus the geometric-
uniform schedule is preferable, unless<★ is exponentially smaller than the above bound, e.g., if _ = ∞, or if a nonlinear
objective is more stable to perturbations of each s8 about its optimum than the Lipschitz constant _ would indicate.

4.1 The Linear Progressive Sampling Algorithm

The core of linear progressive sampling (alg. 1) is quite simple. At timestep C = 1, we guess that a sample of size S1 for
all groups will be sufficient to Y-X optimize the objective, we draw at least such a sample (line 7 for joint sampling, or
lines 9–12 for mixture sampling), compute tail bounds (line 14), then determine the UCB-optimal ℎ̂ (line 16). If our
bounds indicate that ℎ̂ is provably near-optimal, alg. 1 terminates, otherwise, our guess was incorrect, so we increment
C , draw at least SC samples (per-group), and repeat. The basic principle is quite flexible, so alg. 1 can maximize welfare
or minimize malfare of risk or regret via the LinearPSLoss(. . . ) and LinearPSUtility(. . . ) routines.

Theorem 4.5 shows that alg. 1 learns an optimal ℎ ∈ H to within user-specified Y-X AE. We require only monotonicity
(axiom 1) and continuity (axiom 3) of M(·;w), though the power-mean malfare family is convenient, as Lipschitz-
continuity (thm. 2.2 item 3) permits efficient Y-uniformly-convergent schedules (def. 4.2). NB this result generalizes to
welfare objectives, mutatis mutandis (flipping infima and suprema), via the negation reduction of lines 25–30.
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Algorithm 2 Fair Learning with Braided Progressive Sampling under the Conditional Sampling Model
1: procedure BraidedPSLoss(H , ℓ (·, ·),D1:6, I1:6,AES(. . . ), S,�, Y,

W(·;w), Reg)→ (ℎ̂, ˆ̀, Ŷ, W

★↓)
2: input: Hypothesis class H , loss function ℓ (·, ·), per-group distributions D1:6 , cost model I1:6 ∈ R6+ , additive error scalar bound

AES(<,X, x,~), schedule S ∈ Z∞+ and � ∈ [0, 1)∞, confidence radius Y, weighted malfare

W(·;w), and Boolean Reg
3: output: Empirically UCB-optimal ℎ̂, empirical malfare estimate ˆ̀, confidence radius Ŷ, and lower bound on minimal malfare

W

★↓

4: t1:6 ← 1 ⊲ Initialize per-group timestep indices
5: ∀8 ∈ Z : (x8,1:S1 ,~8,1:S1 ) ∼ D

S1
8

; 9̂8 ← (1 + 1Reg) AES(S1, �1
6
, x8,:,~8,:) ⊲ Draw initial sample for all groups & bound error

6: loop ⊲ Main loop over braided algorithm iterations
7: ∀8 ∈ Z : ŝ★8 ←

(
inf
ℎ∈H

Ê
x8,:,~8,:

[ℓ ◦ ℎ]
)
if Reg else 0 ⊲ Estimate regret baseline as per-group minimal empirical risks (if applicable)

8: ℎ̂ ← argmin
ℎ∈H

W(
8 ↦→ 2 ∧ Ê

x8,:,~8,:
[ℓ ◦ ℎ] − ŝ★8 + 9̂8 ;w

)
⊲ Compute UCB-optimal ℎ̂

9:

W★↓ ← inf
ℎ∈H

W(
8 ↦→ 0 ∨ Ê

x8,:,~8,:
[ℓ ◦ ℎ] − ŝ★8 − 9̂8 ;w

)
⊲ Lower-bound optimal

W

★

10: ( ˆ W↓, ˆ W↑) ←
( W(

8 ↦→ 0 ∨ Ê
x8,:,~8,:

[ℓ ◦ ℎ̂] − ŝ★8 − 9̂8 ;w
)
,

W(
8 ↦→ 2 ∧ Ê

x8,:,~8,:
[ℓ ◦ ℎ̂] − ŝ★8 + 9̂8 ;w

) )
⊲ LCB and UCB on ℎ̂ (regret) malfare

11: if ˆ W↑ ≤ W

★↓ + 2Y then ⊲ Check if desired error guarantee is met (termination condition)
12: ( ˆ̀, Ŷ) ←

(
1
2 ( ˆ

W↓ + ˆ W↑), 12 ( ˆ

W↑ − ˆ W↓)
)

⊲ Symmetric estimate of ˆ̀ of malfare or regret of ℎ̂

13: return (ℎ̂, ˆ̀, Ŷ, W

★↓)
14: end if
15: ∀8, 9 ∈ Z, C ∈ Z+ : 9̃ (8 )

9,C
←

(
9̂ 9 if 8 ≠ 9 else 9̂ 9

√√
St 9 ln

6

�t 9

SC+t 9 ln
6

�C+t 9

)
⊲ Estimate of 9̂ 9 after sampling group 8 for C more iterations

16: 8 ← argmax
8∈Z

sup
C ∈Z+

1
I8 (SC+t8 − St8 )︸             ︷︷             ︸
Reciprocal Cost

(
ˆ W↑ − W(

9 ↦→ 2 ∧ Ê
x 9,:,~9,:

[ℓ ◦ ℎ] − ŝ★9 + 9̃
(8 )
9,C

;w
))

︸                                                          ︷︷                                                          ︸
Estimated (Regret) Malfare Improvement

⊲ Select 8 to maximize improvement:cost ratio

17:
(
x8,1+St8:S1+t8,~8,1+St8:S1+t8

)
∼ DS1+t8−St8

8
; t8 ← t8 + 1; 9̂8 ← (1 + 1Reg) AES

(
St8 ,

�t8
6
, x8,:,~8,:

)
⊲ Sample group 8 & bound error

18: end loop
19: end procedure

Theorem 4.5 (Linear PS Guarantees). Suppose (ℎ̂, ˆ̀, Ŷ,M★↓)←LinearPSLoss(H, ℓ ( ·, · ),D,AEV(. . . ), S,�, Y,M( ·;w ), Reg) ,
M(s;w) is continuous and monotonic in s with (possibly infinite) Lipschitz constant _M w.r.t. ‖·‖M, and the schedules
(S,�) are Y

_M (1+1Reg ) -uniformly-convergent w.r.t. AEV(. . . ) and ‖·‖M. Now take ` to be the true objective value
of ℎ̂ and `★ to be the true objective value of the optimal ℎ★, i.e., if Reg = False, take ` � M(8 ↦→ ED8

[ℓ ◦ ℎ̂];w)
and `★ � infℎ∈HM(8 ↦→ ED8

[ℓ ◦ ℎ];w), or if Reg = True, take (see equation 3) ` � M(8 ↦→ Reg8 (ℎ̂);w) and
`★ � infℎ∈H

W(
8 ↦→ Reg8 (ℎ);w

)
. Then, with probability at least 1 − X , the output (ℎ̂, ˆ̀, Ŷ,M★↓) obeys

1) | ˆ̀ − ` | ≤ Ŷ ≤ Y ; & 2) M★↓ ≤ `★ ≤ ` ≤ ˆ̀ + Ŷ ≤ M★↓ + 2Y .

4.2 The Braided Progressive Sampling Algorithm

Under the joint and mixture sampling models (alg. 1), progress is linear (i.e., sequential, as no decisions are made except
when to terminate); we begin with (at least) S1 samples per group, and advance until we reach a sufficient sample size
to terminate with the desired guarantee. For the conditional sampling model, we present braided progressive sampling

(alg. 2), which is actively making decisions, thus linear analysis is not applicable. At each iteration (line 6) of alg. 2, a
group 8 ∈ Z is chosen (line 16) to optimize an estimate of knowledge-gain via logic similar to that of §3.3 (details
are deferred to appx. B.2), and group 8 is sampled for one additional timestep (line 17), i.e., the sample associated with
group 8 is extended from size St8 to S1+t8 , where t8 denotes the current timestep for group 8 . The remainder of alg. 2 is
essentially the same as alg. 1; after sampling, we optimize (line 8) a UCB-optimal ℎ̂, bound the objective (lines 9–10),
and terminate if the user-supplied guarantee is met, otherwise we continue.

There is thus a lattice of possible sample size vectorsm. To avoid a union bound over this (exponentially large) lattice,
we analyze the method as a braid, in that 6 progressive sampling sequences are concurrently active, and at each iteration

14
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we select some group 8 , and advance the schedule by one timestep for only group 8 . Consequently, we must use (line 17)
the additive error scalar bound 9̂8 ← AES

(
m8 ,

�t8
6
, x8,:,~8,:

)
, i.e., we operate on one group at a time, rather than over all

groups as in the linear algorithm (alg. 1 line 14). Similar analysis is employed for multi-armed bandits, where a union
bound is taken over all timesteps and each arm being sampled. We now show correctness of alg. 2.

Theorem4.6 (Braided PSGuarantees). Suppose (ℎ̂, ˆ̀, Ŷ,M★↓)←BraidedPSLoss(H, ℓ ( ·, · ),D,AES(. . . ), S,�, Y,M( ·;w ), Reg) ,
M(s;w) is continuous and strictlymonotonic in s with (possibly infinite) Lipschitz constant _M w.r.t. ‖·‖M, and the sched-
ules (S,�) are Y

_M (1+1Reg ) -uniformly-convergent w.r.t. ‖·‖M and the additive error vector bound

AEV(m, X, x,~) ←
〈
AES(m1,

X
6
, x1,~1), . . . ,AES(m6,

X
6
, x6,~6)

〉
. Now take ` to be the true objective value of ℎ̂ and `★

to be the true objective value of the optimal ℎ★ (see thm. 4.5). Then, with probability at least 1 − X , we have
1) | ˆ̀ − ` | ≤ Ŷ ≤ Y ; & 2) M★↓ ≤ `★ ≤ ` ≤ ˆ̀ + Ŷ ≤ M★↓ + 2Y .

5 CONCLUSION

This work generalizes existing theories of fair machine learning, with welfare, malfare, and regret objectives, thus
subsuming the minimax fair learning [1, 20, 30, 33, 43], multi-group agnostic PAC learning [7, 39], and fair-PAC learning

[14] settings, while enjoying rigorous statistical-learning guarantees and the axiomatization of cardinal welfare theory. In
particular, we bound the generalization error and sample complexity of UCB-optimal models, either given a fixed sample,
or to meet a user-supplied Y-X optimality guarantee via progressive sampling. Our bounds leverage the specific character
of the objective at hand, and our progressive sampling methods are tailored to three realistic models of data generation.
We stress that while training UCB-optimal models is analytically convenient, there is also an important fairness impact
to this decision, as fair malfare functions (e.g., egalitarian) place strong emphasis on the most disadvantaged groups,
which are often understudied minority groups. Cousins [14] notes that optimizing empirical malfare M̂ overfits to
small numbers of sampled minorities, however we argue that training UCB-optimal models (i.e., optimizing M̂↑) factors
uncertainty into training, so that the needs of understudied groups (i.e., those with large 9̂8 values) are better addressed.

Our active learning setting under the conditional sampling model is philosophically intriguing, as we find that
optimally investing sampling effort under uncertainty is challenging, depends on the objective at hand, and has
important fairness impact. In §3.3 , we see that a host of factors involving the objective, function classH , and per-group
distributions D1:6 all interact to determine the sharpness of welfare, malfare, and regret bounds, and property 3.8
quantifies the incremental UCB improvement of sampling each group. This analysis answers questions raised by Chen
et al. [12] as to how sampling-error impacts fairness, and generalizes the analysis of Shekhar et al. [43] from the
egalitarian special-case to arbitrary power-mean malfare functions. Algorithm 2 then incorporates these ideas into an
active sampling algorithm, which dynamically select groups to sample based on projected UCB improvement. Notably,
alg. 1 does use uniform sample sizes under the joint sampling model, and uses whatever data are available under the
mixture sampling model, as these are natural choices under these sampling models. In contrast, under the conditional
sampling model, alg. 2 is able to make more intelligent decisions as to where to allocate sampling effort.

We thus conclude that algorithmic fairness, statistical uncertainty, and sample complexity are tightly intertwined,
and must all be considered to best allocate resources in service of the social planner. We are hopeful that this analysis
and algorithmic study will lead to a greater emphasis on sample-complexity and finite-sample error analysis for the
social planner’s problem, which is traditionally analyzed in terms of the asymptotic Bayesian methods of classical
economics. In particular, we are hopeful that this analysis emphasizes and mathematically supports the call for greater
visibility of minority groups and the importance of incorporating diverse data into (fair) machine learning systems.
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A PROOF APPENDIX

We now present proofs of all mathematical claims in the paper body.We first show in appx. A.1 the estimation guarantees,
sample complexity, and incremental-sampling knowledge-gain bounds of §3. We then derive in appx. A.2 the results of
§3, i.e., those related to sampling schedules and our progressive sampling algorithms.

A.1 Statistical Estimation Guarantees for Malfare, Welfare, and Regret

Here we show all bounds related to uniform convergence of sentiment values, and estimating welfare, malfare, and
regret. We begin with thms. 3.1 and 3.2 and property 3.3, which bound single-group uniform convergence rates in the
form of additive error scalar bounds, i.e., AES(. . . ), under various conditions.

Theorem 3.1 (Uniform Convergence for Bounded Finite Hypothesis Classes). We may bound the distribution-free
AES(<,X), the distribution-dependent AESD (<,X), and the data-dependent AES(<,X, x,~) scalar additive error as

1)Y ←

√
A 2 ln 2|H|

X

2< [27] ; 2)Y ← A ln 2|H|
X

3< + sup
ℎ∈H

√
2VD [s◦ℎ] ln 2|H|

X

< [6] ; & 3) Ŷ ← 7A ln 2|H|+1
X

3(<−1) +
sup
ℎ∈H

√
2 V̂x,~ [s◦ℎ] ln 2|H|+1

X

(<−1) [16] .

Proof. First note that items 1 and 2 hold via union bound over the lower and upper tails of the sentiment of each
ℎ ∈ H , hence the ln 2 |H |

X
term, and item 3 has a union bound over one additional tail, which is used to bound the

supremum variance. In particular, item 1 holds via Hoeffding’s [27] inequality, and item 2 via Bennett’s inequality [6]
(technically the sub-gamma form of Bennett’s sub-Poisson bound, a.k.a. Bernstein’s inequality), and item 3 holds via
the supremum variance bound of Cousins and Riondato [16, thm. 2], followed by Bennett’s inequality. Note that here
V̂[·] denotes the unbiased (Bessel-corrected) empirical variance, though the empirical supremum variance is still an
upward-biased estimate of the supremum variance. �

Theorem 3.2 (Uniform Convergence with Rademacher Averages). Suppose hypothesis classH and sentiment function
s(·, ·), take (x,~) ∼ D< and 2 ∼ U< (±1), i.e., 2 is uniformly distributed on (±1)<, and define the Rademacher average

R< (s ◦ H ,D) and Bousquet variance proxy V< (s ◦ H ,D) [see 9] as

R< (s ◦ H ,D) � E
x,~,2

[
sup
ℎ∈H

���� 1< <∑
8=1

28 (s ◦ ℎ) (x8 ,~8 )
����] , V< (s ◦ H ,D) � sup

ℎ∈H
V
D
[s ◦ ℎ] + 4AR< (s ◦ H ,D) . (7)

We may then bound AESD (<,X) as Y ← 2R< (s ◦ H ,D) + A ln 1
X

3< +
√

2V< (s◦H,D) ln 1
X

< .
Proof. This result follows via the Rademacher symmetrization inequality [8, lemma 11.4], which upper-bounds the

expected supremum deviation as twice the Rademacher average, followed by Bousquet’s [2002] bound on the supremum
deviation, i.e., on the quantity AESD (. . . ). �

Property 3.3 (Practical Bounds on Rademacher Averages). Suppose as in thm. 3.2. The following then hold.
1) SupposeH has Vapnik-Chervonenkis (VC) dimension 3 [46, 47], and ℓ (~′, ~) � 1−1{~} (~′) is the 0-1 loss. Then for
some absolute constant 2 , R< (ℓ ◦ H ,D) ≤

√
23
< , which implies bounds for linear classifiers, bounded-depth decision

trees [31], and many classes of neural network [2].
2) SupposeX � {®G ∈ R∞ | ‖ ®G ‖2 ≤ '} is the'-radiusL2 ball inR∞,H � {®G ↦→ ®F · ®G | ‖ ®F ‖2 ≤ W} is aW-regularized linear
class, Y � [−'W, 'W], and ℓ (·, ·) is a _-Lipschitz loss function s.t. ℓ (~,~) = 0. Then A ≤ 2_'W and R< (ℓ ◦H ,D) ≤ 2_'W√

<
.

This implies bounds for (kernelized) SVM, generalized linear models [35], and bounded linear regression.

Proof. This result is a collection of standard results in statistical learning theory, most of which are fully cited in
the property statement. We now carry out our bibliographic duties with regards to the remaining results. These bounds
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are often stated for the empirical Rademacher average, R̂<
(
ℓ ◦ H , (x,~)

)
which conditions on the sample (x,~), but we

state bounds that hold over any possible distribution by considering worst-case realizations of these samples.

We first show item 1. The bound R< (H ,D) ≤
√

23
< follows via Dudley’s chaining or entropy integral arguments,

along with Haussler’s bound on the L2 covering number of Vapnik-Chervonenkis classes, see, e.g., Boucheron et al. [8,
thm. 13.7]. The specific classes mentioned in the theorem statement are of bounded VC dimension, hence their inclusion.

We now show item 2. First note that each of the cited model classes is Lipschitz-continuous, so their bounds follow
from the general statement. Now, note that the range ofH is [−'W, 'W], which follows directly from the Cauchy-Schwarz
inequality. Composition with ℓ (·, ~), for ~ ∈ [−'W, 'W], then maps this range to a subset of [0, 2_'W], by Lipschitz
continuity and nonnegativity of ℓ (·, ·), and the fact that ℓ (~,~) = 0, hence we conclude A ≤ 2_'W .

We now bound the Rademacher average. In particular, Shalev-Shwartz and Ben-David [42, lemma 26.10] show that
R< (H ,D |X) ≤

'W√
<
, where D |X denotes the marginalization of the label space Y from the instance distribution D,

i.e., they bound the Rademacher average of the linear hypothesis class on the unlabeled distribution over X. Technically,
their definition of the Rademacher average contains no absolute value inside the supremum, but this is immaterial,
as Cousins and Riondato [16, lemma 5] show that the same bound holds with the absolute value. We then apply the
Ledoux-Talagrand contraction principle5 [8, lemma 11.6] to compose the hypothesis class with a _-Lipschitz loss
function, which yields R< (ℓ ◦ H ,D) ≤ 2_R< (H ,D |X) ≤

2_'W√
<

. �

We now show thms. 3.4 and 3.5 and coro. 3.6, which bound the tails and expectations of malfare and welfare values
in terms of additive error vector bounds, i.e., in terms of AEV(. . . ).

Theorem 3.4 (Welfare and Malfare Tail Bounds). Suppose sentiment function s(·, ·) : Y′ × Y → R0+, per-group
probability distributions D1:6 , sample size vector m ∈ Z6+ , samples (x,~) ∼ Dm1

1 × · · · × Dm6

6 , failure probability
X ∈ (0, 1), and additive error bound AEV(. . . ), and let 9̂ ← AEV(m, X, x,~). Then for all ℎ ∈ H and all monotonic
aggregator functions M(·;w), it holds with probability at least 1 − X over x , ~, and 9̂ that

M
(
8 ↦→ 0 ∨ E

D8

[s ◦ ℎ] − 9̂8 ;w
)

︸                                 ︷︷                                 ︸
True LB

≤ M
(
8 ↦→ Ê

x8,:,~8,:
[s ◦ ℎ];w

)
︸                          ︷︷                          ︸

Plug-In Estimate M̂

≤ M
(
8 ↦→ 2 ∧ E

D8

[s ◦ ℎ] + 9̂8 ;w
)

︸                                 ︷︷                                 ︸
True UB

, & (9)

M
(
8 ↦→ 0 ∨ Ê

x8,:,~8,:
[s ◦ ℎ] − 9̂8 ;w

)
︸                                      ︷︷                                      ︸

LCB Estimate M̂↓

≤ M
(
8 ↦→ E

D8

[s ◦ ℎ];w
)

︸                      ︷︷                      ︸
True Aggregate M

≤ M
(
8 ↦→ 2 ∧ Ê

x8,:,~8,:
[s ◦ ℎ] + 9̂8 ;w

)
︸                                     ︷︷                                     ︸

UCB Estimate M̂↑

, (10)

thus if M(·;w) is _-Lipschitz-continuous w.r.t. some norm ‖·‖M, we have����M (
8 ↦→ Ê

x8,:,~8,:
[s ◦ ℎ];w

)
︸                          ︷︷                          ︸

Plug-In Estimate

−M
(
8 ↦→ E

D8

[s ◦ ℎ];w
)

︸                      ︷︷                      ︸
True Aggregate

���� ≤ _‖9̂‖M . (11)

Proof. We first note that, by the definition ofAEV(. . . ), with probability at least 1−X , for allℎ ∈ H and groups 8 ∈ Z,
it holds that

��ED8
[s ◦ ℎ] − s★

8

�� ≤ 9̂8 . Given this, note that (9) and (10) follow directly from the monotonicity assumption

on M(·;w). Similarly, (11) follows from the monotonicity assumption and the definition of Lipschitz-continuity. �

5It is of course possible to remove the leading 2 factor, if we are willing to work with the Rademacher average definition without the absolute value.
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Theorem 3.5 (Welfare and Malfare Expectation Bounds). Suppose as in thm. 3.4, and assume also thatAEV(m, X, x,~) =
AEV(m, X) is a distribution-free or distribution-dependent (but not data-dependent) bound. Then

|M − E[M̂] | ≤ E [|M − M̂|] ≤ _
w 1

0
‖AEV(m, X)‖M dX .

Proof. First note that by Jensen’s inequality and convexity of |·|, we have

|M − E[M̂] | ≤ E [|M − M̂|] ,

thus all that remains to be shown is

E [|M − M̂|] ≤ _
w 1

0
‖AEV(m, X)‖M dX .

By the definition of Lipschitz-continuity, note that for any s, s′, it holds that��M(s;w) −M(s′;w)
�� ≤ _‖s − s′‖M .

Now, we conclude the desideratum as

E [|M − M̂|] =
w ∞
0
P ( |M − M̂| > Y) dY Properties of Expectation (Hazard Formula)

≤
w ∞
0
P

(
_‖s − ŝ‖M > Y

)
dY |M − M̂| ≤ _‖s − ŝ‖M

=

w 1

0
inf

{
n ≥ 0

�� P (
_‖s − ŝ‖M > Y

)
≤ X

}
dX Integral of Inverse Formula

≤ _
w 1

0
‖AEV(m, X)‖M dX . Definition of AEV(. . . ) �

Corollary 3.6 (Bernstein-Type Malfare Bounds). Suppose as in thm. 3.1, and also per-group sample size < (i.e.,
m = 〈<, . . . ,<〉) and ? ≥ 1 power-mean malfare function

W

? (·;w). Now, let v8 � ED8
[s ◦ℎ], and define variance proxy

E as E �
(∑

8∈Z w8
√
v8

)2 for ? = 1, E � w · v for ? ∈ (1, 2], or E � ‖v‖∞ for ? > 2. Then, for all X ∈ (0, 1), we have

1)P
(
| W− ˆ W| ≥ A ln 26

X

3< +
√

2E ln 26
X

<

)
≤ X ; 2)E[| W− ˆ W|]≤ A ln(246)

3< +
√
2E ln(246)

< ; & 3)

W≤E[ ˆ W] ≤ W+ A ln(46)3< +
√
2E ln(46)

< .

Proof. We first show the tail bounds (item 1), which we then use to show the expectation bounds (items 2 and 3). In
particular, we apply thm. 3.1 item 2 to the singleton function familyH � {ℎ} (thus |H | = 1), with a union bound over
all 6 groups to bound per-group confidence radii, i.e.,

98 ←
A ln 26

X

3<
+ sup
ℎ∈H

√
2VD8

[s ◦ ℎ] ln 26
X

<
=
A ln 26

X

3<
+

√
2v8 ln

26
X

<
.

We then apply (11) of thm. 3.4 to bound malfare tails in terms of these confidence radii, via the Lipschitz property of
power-mean malfare functions, i.e., thm. 2.2 item 3. Subsequently, thm. 3.5 converts these tail bounds into expectation
bounds for item 2, and similar logic for 1-tailed bounds yields item 3. In all cases,

W

? (9;w) (and integrals thereof) are
the key quantities that we must bound. The resulting bounds have rather convenient forms for ? ∈ {1, 2,∞}, so we
relate all other cases to these three via monotonicity.
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We first show the case of ? = 1. Observe that

W

1 (9;w) =
∑
8∈Z

w8
©­­«
A ln 26

X

3<
+

√
2v8 ln

26
X

<

ª®®¬ Definition of

W

1 (·;w), 9

=
A ln 26

X

3<
+ ©­«

∑
8∈Z

w8
√
v8

ª®¬
√

2 ln 26
X

<
=
A ln 26

X

3<
+

√
2
(∑

8∈Z w8
√
v8

)2 ln 26
X

<
. Algebra

Now suppose ? ∈ [1, 2]. Then

W

? (9;w) ≤

W

2 (9;w) Power-Mean Ineqality

=

√√√√√√√∑
8∈Z

w8
©­­«
A ln 26

X

3<
+

√
2v8 ln

26
X

<

ª®®¬
2

Definition of

W

2 (·;w), 9

=

√√√√(
A ln 26

X

3<

)2
+ 2

A ln 26
X

<
·
∑
8∈Z w8

√
2v8 ln

26
X√

<
+
2w · v ln 26

X

<
Algebra

≤

√√√√(
A ln 26

X

3<

)2
+ 2

A ln 26
X

<

√
2
∑
8∈Z w8v8 ln

26
X

<
+
2w · v ln 26

X

<
Jensen’s Ineqality

=

√√√√√√√©­­«
A ln 26

X

3<
+

√
2w · v ln 26

X

<

ª®®¬
2

=
A ln 26

X

3<
+

√
2w · v ln 26

X

<
. Factoring

Finally, for ? ∈ [1,∞], we have

W

? (9;w) ≤

W

∞ (9;w) = max
8∈Z

A ln 26
X

3<
+

√
2v8 ln

26
X

<
=
A ln 26

X

3<
+

√
2‖v‖∞ ln 26

X

<
.

This yields the final case of the result. In all three cases, the tail bounds of item 1 then follows by substitution into (11).

We now show the expectation bounds of items 2 and 3. Via thm. 3.5, we seek to bound integrals of the form

E [| W− ˆ W|] ≤
w 1

0

W

?

(
AEV(〈<, . . . ,<〉, X);w

)
dX ≤

w 1

0

√
2E ln 6

X

<
+
A ln 6

X

3<
dX ,

for the various E as defined above. Note that we will encounter either ln 26
X

or ln 6

X
terms, depending on whether we

employ 2-tailed or 1-tailed bounds, in items 2 or 3, respectively. The difficult part of these integrals is
w 1

0

√
ln

6

X
dX = 1

2
√
c6 erfc

(√
ln6

)
+

√
ln6 Integration

≤
√
ln(46) . ∀D ≥ 1 :

√
lnD + D 1

2
√
c erfc(

√
lnD) ≤

√
ln(4D)

Note that the integration is exact, and the looseness of the erfc(·) (complementary error function) bound is quite
minuscule, both multiplicatively and additively, as ∀D ≥ 1 : 0 ≤

√
ln(4D) −

(√
lnD + D 1

2

√
c erfc(

√
lnD)

)
≤ 1 −

√
c
2 , see

fig. A1 for visualization. Observe also that the logarithmic terms in the fast-decaying summands integrate (improperly)
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(a) Natural axes plot. Note that the shaded
region between the lower and upper bounds
is difficult to see without scaling, and its
height is maximized at D = 1.
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Fig. A1. Plots of various scalings of
√
lnD +

√
c
2 D erfc

√
lnD and lower and upper bounds thereof (~-axis), i.e.,

√
c
4 + lnD ≤

√
lnD +

√
c
2 D erfc

√
lnD ≤

√
1 + lnD, see proof of coro. 3.6, against D ≥ 1 (G-axis). The region sandwiched by the lower and upper bounds is

shaded in purple, is quite small for all D ≥ 1, and converges to 0 both additively and multiplicatively.

as w 1

0
ln

6

X
dX = ln(6) −

w 1

0
lnX dX = ln(6) + 1 = ln(46) .

Substituting the values of E derived above into these indefinite integrals then yields the desiderata. In particular, item 2
substitutes into thm. 3.5 directly to bound E[| W− ˆ W|], and item 3 substitutes into a directed variant of thm. 3.5 (i.e.,
one considering single-sided error, rather than absolute error) to upper-bound E[ ˆ W], paired with the observation that,
by Jensen’s inequality (as ? ≥ 1 power means are convex),

W≤ E[ ˆ W]. �

We now show thm. 3.7, which provides regret bounds analogous to the aggregator function bounds of thm. 3.4.

Theorem 3.7 (Regret Estimation Bounds). Suppose sentiment function s(·, ·) : Y′ × Y → R0+, per-group probability
distributions D1:6 , sample size vector m ∈ Z6+ , samples (x,~) ∼ Dm1

1 × · · · × Dm6

6 , failure probability X ∈ (0, 1), and
additive error bound AEV(. . . ), and let 9̂ ← AEV(m, X, x,~). Then for all ℎ ∈ H and all monotonic malfare functions

W(·;w), it holds with probability at least 1 − X over x , ~, and 9̂ that

W

(
8 ↦→ 0 ∨

���� ED8

[s ◦ ℎ] − s★8

���� − 29̂8 ;w)︸                                         ︷︷                                         ︸
True Regret Malfare LB

≤ W

(
8 ↦→

���� Êx8,:,~8,:
[s ◦ ℎ] − ŝ8

����;w)︸                                ︷︷                                ︸
Plug-In Regret Malfare

≤ W

(
8 ↦→ 2 ∧

���� ED8

[s ◦ ℎ] − s★8

���� + 29̂8 ;w)︸                                        ︷︷                                        ︸
True Regret Malfare UB

, & (14)

W

(
8 ↦→ 0 ∨

���� Êx8,:,~8,:
[s ◦ ℎ] − ŝ8

���� − 29̂8 ;w)︸                                            ︷︷                                            ︸
LCB Estimate

≤ W

(
8 ↦→

���� ED8

[s ◦ ℎ] − s★8

����;w)︸                            ︷︷                            ︸
True Regret Malfare

≤ W

(
8 ↦→ 2 ∧

���� Êx8,:,~8,:
[s ◦ ℎ] − ŝ8

���� + 29̂8 ;w)︸                                           ︷︷                                           ︸
UCB Estimate

, (15)

thus if

W(·;w) is _-Lipschitz-continuous w.r.t. some norm ‖·‖ W, we have���� W

(
8 ↦→

���� Êx8,:,~8,:
[s ◦ ℎ] − ŝ8

����;w)
︸                                 ︷︷                                 ︸

Plug-In Regret Malfare

− W

(
8 ↦→

���� ED8

[s ◦ ℎ] − s★8

����;w)
︸                              ︷︷                              ︸

True Regret Malfare

���� ≤ 2_‖9̂‖ W. (16)
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Proof. This result follows essentially the same reasoning as thm. 3.4. The salient difference here is that we now
bound both the estimation error of ℎ and each h★

8
, which when summed yield the novel 2-factors. In particular, we have

that with probability at least 1 − X , it holds for each 8 ∈ Z and ℎ ∈ H (simultaneously) that��� E
D8

[s ◦ ℎ] − s★8
��� = ���( Ê

x8,:,~8,:
[s ◦ ℎ] − ŝ8

)
+

(
E
D8

[s ◦ ℎ] − s★8
)
−

(
Ê

x8,:,~8,:
[s ◦ ℎ] − ŝ8

)��� Algebra

≤
��� Ê
x8,:,~8,:

[s ◦ ℎ] − ŝ8
��� + ��� E
D8

[s ◦ ℎ] − Ê
x8,:,~8,:

[s ◦ ℎ]
��� + ��s★8 − ŝ8 �� Triangle Ineqality

≤
��� Ê
x8,:,~8,:

[s ◦ ℎ] − ŝ8
��� + 9̂8 + 9̂8 = ��� Ê

x8,:,~8,:
[s ◦ ℎ] − ŝ8

��� + 29̂8 . Definition of 9̂

This result, paired with the assumed monotonicity of

W(·;w), yields (14) and (15), and then applying the definition of
Lipschitz continuity yields (16). �

We now show property 3.8, which approximates the reduction to the UCB resultant from drawing a single additional
sample for some group 8 .

Property 3.8 (Incremental Gain of Sampling). Suppose power-mean malfare

W

? (·;w), sample (x,~) with group sample
sizes m1:6 , and let x′,~′ extend x,~ to sample sizes m′, where m′ = m + 18 , i.e., group 8 has one additional sample.
Now, let 9̂ ← AEV(m, X, x,~) and 9̃ ← AEV(m′, X, x′,~′), and take ℎ̂ � argminℎ∈H

W

?

(
8 ↦→ Êx8,:,~8,: [ℓ ◦ ℎ] + 9̂8 ;w

)
,

ˆ W�

W

?

(
8 ↦→ Êx8,:,~8,:[ℓ ◦ ℎ̂];w

)
, ˆ W↑ �

W

?

(
8 ↦→ Êx8,:,~8,:[ℓ ◦ ℎ̂]+9̂8 ;w

)
, and ˜ W↑ � infℎ∈H

W

?

(
8 ↦→ Êx′

8,:,~
′
8,:
[ℓ ◦ ℎ]+9̃8 ;w

)
.

Then the incremental impact of sampling from group 8 on the UCB is approximately

ˆ W↑ − ˜ W↑ ≈ 9̂8w8
2m8 + 3

2

(
Êx8,:,~8,: [ℓ ◦ ℎ̂] + 9̂8

ˆ W↑

)?−1
≈ 9̂8w8

2m8

(
Êx8,:,~8,: [ℓ ◦ ℎ̂]

ˆ W

)?−1
. (17)

Proof. We first assume that for each ℎ ∈ H , 8 ∈ Z, it holds that Êx8,:,~8,: [ℓ ◦ ℎ] ≈ Êx′8,:,~′8,: [ℓ ◦ ℎ], and we use this
approximation throughout. The result then follows directly from three observations.

First, note that m
ms8

W

? (s;w) =
w8s

?−1
8W?−1

? (s;w )
, thus for any UCB-optimal ℎ̂, we have the subderivative6

w8

(
Êx8,:,~8,: [ℓ ◦ ℎ̂] + 9̂8

ˆ W↑

)?−1
∈ msub

msub9̂8
inf
ℎ∈H

W

?

(
8 ↦→ Ê

x8,:,~8,:
[ℓ ◦ ℎ̂] + 9̂8 ;w

)
.

Now, assuming Θ
√

1
m8

asymptotic behavior of 9̂8 , observe that

9̃8 ≈ 9̂8

√
m8

m8 + 1
=⇒ (9̂8 − 9̃8 ) ≈ 9̂8

(
1 −

√
m8

m8 + 1

)
≈ 9̂8

2m8 + 3
2

≈ 9̂8
2m8

,

and note that this approximation is quite sharp (see fig. A2), as

∀D ≥ 1 :
1

2D + 3
2

≤ 1 −
√

D

D + 1 ≤
1

2D +
√
2

. (21)

6Technically, infℎ∈H

W

?

(
8 ↦→ Êx8,:,~8,: [ℓ ◦ ℎ̂] + 9̂8 ;w

)
is not always convex in 9̂ , thus this quantity is not always a subderivative, but it is at least a reason-

able linear approximation. Furthermore, a sufficient condition for convexity and the stated subderivative to hold is for

W

?

(
8 ↦→ Êx8,:,~8,: [ℓ ◦ ℎ̂] + 9̂8 ;w

)
,

which is always convex in 9̂ , to also be jointly convex in 9̂ and in the space of ℎ̂ ∈ H (as is quite common in machine learning and optimization contexts).
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Finally, using the subderivative approximation, the impact of the additional sample on the malfare is approximately

ˆ W↑ − ˜ W↑ ≈ (9̂8 − 9̃8 )
msub

msub9̂8
inf
ℎ∈H

W

?

(
9 ↦→ Ê

x 9,:,~9,:
[ℓ ◦ ℎ̂] + 9̂ 9 ;w

)
Finite Difference Approximation

Ê
x8,:,~8,:

[ℓ ◦ ℎ] ≈ Ê
x′
8,:,~

′
8,:

[ℓ ◦ ℎ]

≈ 9̂8

(
1 −

√
m8

m8 + 1

)
w8

(
Êx8,:,~8,: [ℓ ◦ ℎ̂] + 9̂8

ˆ W↑

)?−1
See Above

≈ 9̂8
2m8 + 3

2

w8

(
Êx8,:,~8,: [ℓ ◦ ℎ̂] + 9̂8

ˆ W↑

)?−1
See Above

≈ 9̂8w8
2m8

(
Êx8,:,~8,: [ℓ ◦ ℎ̂]

ˆ W

)?−1
.

1
m8+Θ(1) ≈

1
m8

s8+98W

? (s+9;w )
≈ s8W

? (s;w ) �

A.2 Uniformly-Convergent Sampling Schedules and Progressive Sampling Guarantees

In this subsection, we show all results relating to sampling schedules and progressive sampling. Before showing the
correctness of algs. 1 and 2, we begin with the uniformly-convergent schedule analysis of lemma 4.4.

Lemma 4.4 (Sufficient Conditions for Uniformly-Convergent Geometric Schedules). Suppose as in def. 4.2, and assume
sup

(x,~ ) ∈ (X×Y)S) ×6
‖AEV (〈S) , . . . , S) 〉, X) , x,~)‖M ≤ Y . (19)

Then the geometric-uniform schedule (S, �) is Y-uniformly-convergent. Furthermore, suppose as in def. 4.3, U ≥ 1
X

and
lim

<→∞
sup

(x,~ ) ∈ (X×Y)<×6
‖AEV (〈<, . . . ,<〉, V−1

V (<+1) , x,~)‖M = 0 . (20)

Then the double-geometric schedule (S, �) is 0-uniformly-convergent.
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Proof. Recall that, via (18) of def. 4.1, the goal is to show that

inf
C ∈Z+

sup
(x,~ ) ∈ (X×Y)SC ×6

‖AEV(〈SC , . . . , SC 〉,�C , x,~)‖M ≤ Y .

We now show the results for the geometric-uniform and double-geometric schedules in separate parts.

The result for the geometric-uniform schedule, i.e., (19), holds by the regularity conditions assumed on AEV(. . . ),
where the infimum occurs, possibly nonuniquely, at C = ) . In particular, this is implied by condition 3, thus we have

inf
C ∈Z+

sup
(x,~ ) ∈ (X×Y)SC ×6

‖AEV(〈SC , . . . , SC 〉,�C , x,~)‖M = sup
(x,~ ) ∈ (X×Y)S) ×6




AEV(〈S) , . . . , S) 〉, X) , x,~)


M
Condition 3

≤ Y . By Assumption

We may thus conclude that the geometric-uniform schedule is Y-uniformly-convergent.

The result for the double-geometric schedule, i.e., (20), uses the regularity conditions on our bound AEV(. . . ), and
also derives a bound on �C in terms of SC , which allows us to reason over only sample sizes, rather than the schedule
itself. Let C (<) denote the smallest timestep C for which a sample of size< is guaranteed to be drawn. In particular,
ignoring the ceiling operator, and the fact that not every possible sample size< ∈ Z+ is in the schedule S, the inverse
of < = UVC gives us C (<) ≥ logV

<
U . However, the actual sample size < may be up to a factor V larger due to the

discretization of the geometric schedule, and it may also be rounded up, thus we have the matching upper-bound
C (<) ≤ logV

V (<+1)
U . With this result in hand, we now substitute and simplify to get

�C (<) ≥
X (V − 1)

V
logV

V (<+1)
U

See Above
Definition 4.3

=
UX (V − 1)
V (< + 1) Algebra

≥ V − 1
V (< + 1) . U ≥ 1

X

Now, observe that sup(x,~ ) ∈ (X×Y)<×6 ‖AEV(〈<, . . . ,<〉, X, x,~)‖M is monotonically decreasing in < and X by
regularity condition 3, and thus, by the specified limit condition, may be taken arbitrarily close to 0 for sufficient values
of< at timestep C (<). We thus conclude that the double-geometric schedule is 0-uniformly-convergent. �

We now show the correctness results for algs. 1 and 2, namely thms. 4.5 and 4.6.

Theorem 4.5 (Linear PS Guarantees). Suppose (ℎ̂, ˆ̀, Ŷ,M★↓)←LinearPSLoss(H, ℓ ( ·, · ),D,AEV(. . . ), S,�, Y,M( ·;w ), Reg) ,
M(s;w) is continuous and monotonic in s with (possibly infinite) Lipschitz constant _M w.r.t. ‖·‖M, and the schedules
(S,�) are Y

_M (1+1Reg ) -uniformly-convergent w.r.t. AEV(. . . ) and ‖·‖M. Now take ` to be the true objective value
of ℎ̂ and `★ to be the true objective value of the optimal ℎ★, i.e., if Reg = False, take ` � M(8 ↦→ ED8

[ℓ ◦ ℎ̂];w)
and `★ � infℎ∈HM(8 ↦→ ED8

[ℓ ◦ ℎ];w), or if Reg = True, take (see equation 3) ` � M(8 ↦→ Reg8 (ℎ̂);w) and
`★ � infℎ∈H

W(
8 ↦→ Reg8 (ℎ);w

)
. Then, with probability at least 1 − X , the output (ℎ̂, ˆ̀, Ŷ,M★↓) obeys

1) | ˆ̀ − ` | ≤ Ŷ ≤ Y ; & 2) M★↓ ≤ `★ ≤ ` ≤ ˆ̀ + Ŷ ≤ M★↓ + 2Y .

Proof. We first show that alg. 1 is guaranteed to eventually terminate7 after reaching some timestep Ĉ . Note that at
timestep C , under the joint sampling model, AEV(. . . ) is evaluated with sample sizes m = 〈SC , . . . , SC 〉, and under the
7Technically, under the mixture sampling model it is possible that the loop (lines 9–12) runs infinitely, but so long as each group is sampled with nonzero
probability, this is a zero probability event.
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mixture sampling model, sample sizes are at least that large, i.e., m � 〈SC , . . . , SC 〉, which by the monotonicity regularity
condition (item 3) on AEV(. . . ), implies that the bounds with larger sample sizes are at least as sharp (in the worst case;
for most reasonable bounds, increasing sample sizes yields improvement).

By the definition of Y
_M (1+1Reg ) -‖·‖M-uniform-convergence (def. 4.1), for finite _, we eventually obtain a sufficiently

accurate estimate (i.e., 9̂ is sufficiently close to 0) such that by the Lipschitz guarantees of thm. 3.4 or thm. 3.7, the
algorithm will terminate (line 19). Furthermore, for infinite _, limC→∞ 9̂ = 0, which again implies eventual termination,
now under only the continuity assumption. In particular, both M★↓ and M̂↑ are eventually Y-estimated, for a total error
of ≤ 2Y, which yields termination.

To see the correctness of this result, we first observe that by union bound over C ∈ Z+, all tail bounds ofAEV(. . . ) hold
simultaneously with probability at least 1 −∑∞

8=1 �8 = 1 − X (recall that X is defined as such by regularity condition 2).
Under the joint sampling model, this union bound is a simple bound over AEV(. . . ) evaluated at sample size vectors
〈S1, . . . , S1〉, 〈S2, . . . , S2〉, . . . , and failure probability values �1,�2, . . . . At first glance, this strategy seems invalid for the
mixture sampling model, as the sample sizes are actually not known a priori, since they depend on the groups sampled,
however a subtle conditioning argument circumvents this objection. The simple trick we employ is to condition the
algorithm on the infinite sequence of z ∈ 2Z samples drawn on line 10, and establish the schedule after performing this

conditioning operation, thus the sample sizes are fixed from the perspective of the schedule, and the samples themselves
remain conditionally i.i.d. given this order. This technique is entirely valid, because the sample sizes depend only on
these z values, and are conditionally independent from the actual samples x and ~.

We henceforth assume that we are in the probability at least 1 − X case where all 9̂ bounds taken over the course of
the schedule hold. With this established, items 1 and 2 follow via thm. 3.4 if Reg = True, and via thm. 3.7 otherwise.
In particular, item 1 holds, as ℎ̂ ∈ H , and Ŷ was computed with AEV(. . . ), we get | ˆ̀ − ` | ≤ Ŷ, and by the termination
condition, Ŷ ≤ Y. To see item 2, observe that it is implied by item 1, coupled with the bound M★↓ ≤ `★, which holds for
similar reasons. �

Theorem4.6 (Braided PSGuarantees). Suppose (ℎ̂, ˆ̀, Ŷ,M★↓)←BraidedPSLoss(H, ℓ ( ·, · ),D,AES(. . . ), S,�, Y,M( ·;w ), Reg) ,
M(s;w) is continuous and strictlymonotonic in s with (possibly infinite) Lipschitz constant _M w.r.t. ‖·‖M, and the sched-
ules (S,�) are Y

_M (1+1Reg ) -uniformly-convergent w.r.t. ‖·‖M and the additive error vector bound

AEV(m, X, x,~) ←
〈
AES(m1,

X
6
, x1,~1), . . . ,AES(m6,

X
6
, x6,~6)

〉
. Now take ` to be the true objective value of ℎ̂ and `★

to be the true objective value of the optimal ℎ★ (see thm. 4.5). Then, with probability at least 1 − X , we have
1) | ˆ̀ − ` | ≤ Ŷ ≤ Y ; & 2) M★↓ ≤ `★ ≤ ` ≤ ˆ̀ + Ŷ ≤ M★↓ + 2Y .

Proof. Proof of thm. 4.6 is quite similar to that of thm. 4.5. The primary difference is that the union bound is now
over 6 individual schedules and all timesteps, i.e., we now have the total failure probability of all possible tail bounds
(taken on line 17) is no greater than ∑

8∈Z

∞∑
C=1

�C

6
=
6

6

∞∑
C=1

�C = X .

Note that while the order these bounds are taken is random, the braided structure takes no more than one bound for
each (8, t8 ) pair consisting of a group 8 ∈ Z and a time index t8 ∈ Z+, and said bounds do not depend on the order in
which they are taken. As the bounds themselves are always taken at the same sample sizes, we need only sum over
failure probabilities of all possible tail bounds that may be taken by the algorithm to union-bound the total failure
probability. As in the proof of the linear algorithm, we conclude that all tail bounds that could possibly be taken by the
algorithm (now over all groups 8 ∈ Z and all timesteps t8 ∈ Z+) hold simultaneously with probability at least 1 − X .
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We now condition on the event that all bounds taken are correct (which holds with probability at least 1 − X). In this
case, as in the linear algorithm, so long as the braided algorithm terminates, it produces a sufficiently accurate answer.
The reasoning here is identical to that of thm. 4.5, as both algorithms share a termination condition.

Despite their similarity, it is not so straightforward as in the linear algorithm to show that the braided algorithm is
guaranteed to terminate (i.e., it does not loop indefinitely). In particular, consider that while in alg. 1, the appropriate
uniformly-convergent schedule is sufficient to guarantee termination eventually, this would not be so in alg. 2 if it were
to select groups arbitrarily at each iteration, e.g., sampling from the same group at every iteration could loop indefinitely.
However, this does not occur, due to the group selection logic on line 16. We consider first the 0-uniformly convergent
schedule case, and then the general case, concluding eventual termination in both.

We first show that given a 0-uniformly convergent schedule, the algorithm will not loop indefinitely without sampling
each group an infinite number of times, thus if the algorithm does not first terminate, any per-group time index vector
t will eventually be exceeded (componentwise). To conclude this, it is sufficient to show that for each group 8 , the
algorithm will either iterate until it either terminates, or group 8 is selected. This is because group 8 will eventually
have the optimal improvement:cost ratio, and thus be selected to sample on line 16, which we now show. Consider that,
by the strict monotonicity assumption, there is always nonzero (positive) projected improvement gain to improving
the error bound 9̂8 , and thus to selecting any group 8 to sample. However, selecting other groups ad nauseam will take
their cost terms to∞, and thus their improvement:cost ratios to 0 (in the limit). It thus follows that, if the termination
condition were never met, each group 8 would be sampled from an unbounded number of times, during which their
error bound would converge as 9̂8  0, and thus 9̂  0. Consequently, by the continuity assumption, it holds that
ˆ W↑  

W(ℎ★) and W

★↓  

W(ℎ★), which implies termination on line 11.
The case of an Y

_M (1+1Reg ) -‖·‖M-uniformly-convergent schedule follows similarly, except now groups may cease
sampling if their error bounds are nonzero, but sufficiently small so as to Y-estimate the objective. If this holds for all
groups (which again happens eventually if termination does not occur first), we again meet the termination condition
of line 11, hence we conclude guaranteed termination in this case.

With termination shown in all cases, we now conclude that alg. 2, produces a sufficiently accurate answer with the
stated probability, by the same reasoning as in the analysis of alg. 1, i.e., thm. 4.5. �

B A TRAVELER’S HANDBOOK TO PROGRESSIVE SAMPLING

In this appendix, we provide deeper intuition for our progressive sampling algorithms, with an emphasis on how they
differ from standard progressive sampling approaches. We also describe how decisions are made as to which group to
sample in the braided algorithm (alg. 2), i.e., under the conditional sampling model. Note that this material is provided
purely to supplement understanding of the methods; all proofs related to these algorithms are detailed in appx. A.2.

B.1 Tricks of the Trade: the Magician’s Secrets, Revealed

Understanding progressive sampling algorithms essentially comes down to understanding how union bounds are taken,
and which tail bounds may be taken and when, since correcting for the multiple comparisons problem is the central
technical issue in such methods (e.g., an algorithm that computes bounds after every sample while using a union
bound is extremely inefficient, because of the excessive union bound cost). For the most part, algs. 1 and 2 are standard
progressive sampling methods, however there are some subtle details that obscure the simple reasoning at their core.
In particular, under the mixture sampling model, sample sizes are not always known a priori, and in the conditional
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sampling model, decisions are actually made dynamically that determine the order in which tail bounds are taken. Both
of these decisions have ramifications that impact the core logic of a static alternating series of sampling and bounding

steps, but as always, there is no real magic here: merely a few logical flourishes that permit these slight modifications to
the standard flow of progressive sampling algorithms.

Under the joint sampling model, the linear progressive sampling algorithm is quite straightforward, as the total
number of samples drawn b each timestep is completely known a priori (i.e., SC from each group at timestep C ), so a
simple union bound over a deterministic schedule suffices. Under the mixture sampling model, there is some subtlety to
why the algorithm works as it does, since the sample sizes at which tests are run are in fact a random variable dependent
on the order in which groups are sampled. A naïve approach would be to consider a union bound over possible orders of
sampling, or otherwise correct for the fact that multiple outcomes are possible, however this is ultimately not necessary,
and such approaches would induce harmful corrective terms to probabilistic error-bounds and sample complexities.
The simple trick we employ is to condition the algorithm on the infinite sequence ofZ samples drawn on line 10, and
establish the schedule after performing this conditioning operation, thus samples drawn under the mixture sampling
model are in fact samples from individual groups in a known order. Of course, we don’t “really” know this order, nor
do we perform this conditioning anywhere in the algorithm; this is an analytical technique, and the simple fact of its
existence suffices to show correctness. This analysis does not actually require a randomized order ofZ samples, and in
fact the algorithm works even if group identities are adversarially selected, as nowhere in the analysis do we actually
assume sampled group identities (line 10) are random. However, it must be true under adversarialZ selection that each
(X,Y) pair drawn is conditionally independently given each group in the setZ, thus the adversarial mixture sampling
analysis is most useful in the context of mutually exclusive groups (i.e., singleton z samples).

Because of these design decisions, all three algorithms are able to use simple progressive sampling parameters, such
as a single sampling schedule S and failure probability schedule �, albeit in slightly different ways. They also enjoy the
characteristic sharpness of standard progressive sampling algorithms, with only an extra 1

6
factor attached to failure

probabilities (X values) for the conditional sampling model, to accommodate the union bound over 6 simultaneous
(braided) linear progressive sampling instances.

B.2 Selecting Where to Sample in the Braided Algorithm

We now discuss how the decision as to which group to sample from is made. Our reasoning here largely parallels that of
property 3.8: we want to maximize the improvement made to the UCB-optimal ℎ̂. However, rather than apply the linear
subderivative approximation, which is accurate for small changes (e.g., adding a single sample), we consider the impact
of advancing the sampling schedule of each group by one timestep; for geometric schedules, this is a multiplicative —
rather than an additive — change to the sample size. We must also include the cost of sampling when selecting where to
sample, so this too enters the equation through the linear cost model I1:6 . Intuitively, the idea is essentially to select
the group 8 for which the ratio of projected improvement to cost is maximized.

Unfortunately, there is a slight wrinkle in the algorithm: at each iteration, we can not simply greedily maximize the
improvement:cost ratio from a single timestep of sampling group 8 , because this leads into a failure mode, wherein if
a group’s risk is near 2 , i.e., near maximal, it will never be sampled. There is no simple workaround, as the malfare
function may not even be defined for inputs larger than 2 (for instance if

W(s;w) is actually the function 2−W0 (2− s;w),
i.e., geometric welfare through the reduction of the LinearPSUtility(. . . ) procedure of alg. 1). Our solution is to
maximize not just the improvement:cost ratio of sampling for a single additional timestep, but over any number C of
timesteps. For reasonable malfare functions and AEV bounds, when the empirical risk is unchanged after taking the
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minimum with 2 (i.e., the expression 2 ∧ Êx8,:,~8,: [ℓ ◦ ℎ] takes the value Êx8,:,~8,: [ℓ ◦ ℎ] on line 8 of alg. 2), we expect
diminishing returns (in improvement:cost ratio) to further sampling, thus the C = 1 timestep greedy optimal choice
should usually be selected.

In particular, given per-group uniform convergence bounds 9̂1:6 and assuming each group is on timestep t1:6 of their
sampling schedule, we estimate the UCB improvement8 for sampling from group 8 for C timesteps as as

9̃ (8 )
9,C
← 9̂ 9 for 8 ≠ 9 , & 9̃ (8 )

9,C
← 9̂ 9

√√√ St 9 ln
6

�t 9

C + St 9 ln 6

�C+t 9

for 8 = 9 (22)

(see line 15). We then estimate the malfare improvement as Δ8,C ← ˆ W↑ − W(
9 ↦→ 2 ∧ Êx 9,:,~9,: [ℓ ◦ ℎ] − ŝ★9 + 9̃

(8 )
9,C

;w
)
, and

compute the cost of sampling from group 8 for C timesteps as I8 (SC+t8 − St8 ). We then select the group with maximal

projected improvement to sampling cost ratio, i.e., we select 8 ← argmax
8∈Z

sup
C ∈Z+

Δ8,C
I8 (SC+t8 − St8 )

(see line 16).

Note that even if the estimated improvement is not accurate, we still gain information; either the upper bound
decreases more than expected, which decreases the relative value of further sampling from this group (in which case
we are less likely to sample from this group in the future), or it decreased less than expected (likely due to selection
bias), in which case we may decide to sample it again, but now more work is required to get the same reduction in
confidence radius (increased cost), so sampling from another group may now be optimal.

Further Notes on Long-Term Planning. Optimizing over timestep count C , as well as group 8 , does seem like it may
create some issues for the algorithm, however the impact is philosophically, computationally, and practically very
small. In general, as long as some improvement to sampling a group is projected to happen eventually, evaluating the
supremum over C exhaustively will eventually reach some C such that the cost is so large that no larger C can be optimal.
For example, if the current (regret) malfare UCB is ˆ W↑, and improvement Δ8,C > 0 is projected after some timestep count
C , then for cutoff timestep C ↑, defined as the smallest integer C ↑ > C such that

ˆ W↑

I8 (SC↑+t8 − St8 )
≤

Δ8,C
I8 (SC+t8 − St8 )

, or equivalently, SC↑+t8 ≥ St8 + (SC+t8 − St8 )
ˆ W↑

Δ8,C
, (23)

the improvement:cost ratio is never maximized after more than C ↑ additional timesteps. We thus conclude evaluating
the supremum over C in group selection (line 16) is not computationally intractable.

Note also that even if sampling group 8 for C timesteps yields an optimal improvement:cost ratio at this iteration, the
algorithm may change course on the next iteration. For example, if more improvement than projected occurs, then
sampling from another group 9 , which now has a greater impact on the malfare (e.g., group 8 is no longer maximal, and
thus inconsequential to egalitarian malfare) now optimizes the improvement:cost ratio, or if less improvement occurs
than projected, then projected improvement of group 8 at the next timestep may decrease, after which another group
may have the optimal projected improvement:cost ratio. In other words, despite some element of long-term planning

with this supremum over C in group selection, the algorithm does not commit to sampling from a group for more than a
single iteration, which is important, because long-term projections are likely to be inaccurate, as they are made with
less information than the greedy-optimal group selection at each iteration.

8Note that we can’t simply assume
√

1
< rates of tail bound convergence, as X may also be changing. Even incorporating the ln 1

X
terms characteristic of

exponential tail bounds is not always entirely accurate; and when the schedule and bound are fully specified, in some cases it may be possible to produce
a better estimate of the bound improvement. In particular, if AES(. . . ) is not data-dependent, we can simply take 9̃ (8 )

8,C
← AES

(
SC+t8 ,

�C+t8
6

)
.
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