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Abstract

As the negative societal consequences of machine learning systems run amok have become increasingly apparent, fair
machine learning methods have seen increased attention for tasks like facial recognition, medical care and diagnosis,
and employment hiring decisions. Despite this positive trend, most attention on the theory side has been focused
on fair supervised and unsupervised settings, whereas second-order impact of machine learning applications, such
as the runaway positive feedback loops in settings like predictive policing, are more naturally posed in the setting
of reinforcement learning. We propose a novel, welfare-centric, fair reinforcement-learning setting, in which the agent
enjoys vector-valued reward from a set of beneficiaries. Given a welfare function W(. . . ), the task is to select a policy
π that is favorable to all beneficiaries, in the sense that it optimizes the welfare of the value of the beneficiaries from
state s0, i.e., argmaxπW

(
V π1 (s0), V π2 (s0), . . . , V πg (s0)

)
. We show that, in this setting, both per-beneficiary exploration and

per-beneficiary policy optimization are insufficient to identify the welfare-optimal policy. Whether an individual action
is a mistake depends on the context of subsequent actions, therefore the standard PAC-MDP framework does not readily
generalize to fair reinforcement learning. Consequently, we develop a stronger learning model, wherein at each timestep
an agent either takes an exploration action or outputs an exploitation policy. We require that each exploitation policy be
ε-welfare optimal, and the number of exploration steps be polynomial in all relevant parameters. We reduce PAC-MDP
learning to this framework, showing that our framework is sufficiently challenging so as to be interesting, and define the
fair E3 learner to operate under this model, thus demonstrating that fair reinforcement learning is tractable.
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1 Introduction

Fair machine learning (ML) methods have recently seen increasing attention for tasks like facial recognition [Lohr, 2018]
and employment hiring decisions [Kleinberg et al., 2018]. Despite this positive trend, most attention on the theory side
has been focused on fair supervised [Agarwal et al., 2018] and unsupervised [Chierichetti et al., 2018] ML, whereas
second-order impact of ML models, such as the runaway feedback loops in settings like predictive policing [Ensign et al.,
2018]are more naturally posed in reinforcement learning (RL) settings. We apply ideas from welfare-centric supervised
learning [Cousins, 2021, 2022] to reinforcement learning (RL) settings; in particular, we assume an agent receives a
vector-valued reward signal from a set of beneficiaries, each representing, e.g., different racial, gender, religious groups,
and the task is to learn a single policy that treats beneficiaries fairly.

We argue it is not the role of the algorithm designer to dictate what fairness means in the sense of how to compromise between
beneficiaries, but rather to optimize for a given fairness notion (ideally one agreed upon by society, government, political
philosophers, and other interested parties), as encapsulated by a metric of societal welfare. In supervised learning, doing
so is relatively straightforward, as we generally maximize the welfare of expected per-beneficiary utility, so in RL, we take
utility to be the standard geometrically discounted value function w.r.t. each beneficiary’s reward. In general, optimizing
welfare is referred to as the social planner’s problem, so in a sense our work addresses this problem in the context of RL.

While optimizing the welfare of beneficiary value functions is a well specified goal for a planning algorithm, or when
studying the asymptotic behavior of a learning algorithm, when considering the process of fair learning in an unknown
MDP, it is imperative that we also ask the right questions as to how quickly we can learn and if we can guarantee that our
learning algorithm behaves fairly in all but a finite number of steps. To this end, we generalize the PAC-MDP framework to
a novel adversarial fair MDP learning framework, which represents a substantially more difficult learning task. Nevertheless,
we show that an algorithm inspired by the classic E3 algorithm [Kearns and Singh, 2002], which we call fair E3, is capable
of adversarial fair MDP learning.

In fair learning settings, quantifying whether an action is fair is substantially more difficult than quantifying whether
an action is optimal to a single agent, because fairness depends on the context of how the agent behaves overall (i.e.,
tradeoffs between beneficiaries should be balanced). Consequently, in our model, the agent must output fair policies when
it is capable of doing so. When it is not, the agent can output only exploration actions, and our concept of learnability
requires that the agent with high probability always outputs ε-optimal fair policies, while taking only a bounded number
of exploration actions over its infinite lifetime. We allow an adversary to move the agent arbitrarily after it outputs a
policy. At any step, the adversary is allowed to select a new welfare function, representing changing societal ideals of
how fairness should work, and the agent is expected to output either an exploration action, or a policy optimizing said
welfare function. Of course, the adversary is free to leave the agent’s position and welfare function unchanged with no
degradation in the upper-bounds we prove.

Contributions

1. We frame the traditionally egocentric challenge of reinforcement learning as a social problem, where the actions taken
by an agent impact a set of beneficiaries.
2. Using ideas from vector-valued reinforcement learning, econometrics, and social welfare theory, we establish welfare
optimal policies over the value functions of the set of beneficiaries. We focus on finite-state fully-observable MDPs with
bounded reward and γ-geometric value-discounting, but our philosophy and methodology can be generalized.
3. We introduce a learning framework in which the agent only observes the consequences of its actions during exploration,
and that an adversary can freely move the agent whenever the agent outputs an exploitation policy. During exploitation,
the agent is expected to correctly return a near-welfare optimal policy from the current state with high probability, and
is also expected to exploit in all but a finite number of exploratory steps. This specific decoupling of exploration and
exploitation conditions is particularly conducive to studying the multi-beneficiary RL setting, in which the optimal policy
may in general depend on the starting state.
4. We show that our learning framework, which we refer to as the adversarial fair MDP learning framework, is stronger
(more difficult) than the well-known probably-approximately correct (PAC) MDP reinforcement learning framework.
5. In section 3, we present the fair E3 algorithm, and prove that it is an adversarial fair MDP learner.

2 Illuminating Examples

We first consider a few simple examples (visualized in fig. 1) that illustrate that intuition from the standard scalar-reward
RL setting can be misleading. In these examples, we consider only the relatively straightforward egalitarian welfare (i.e.,
minimum utility,WEgal(a, b) = min(a, b)) function, on stateless (single-state) MDPs with deterministic rewards. Despite
this barren setting, we find that the standard RL algorithms exhibit misbehavior in learning.
Example 1 (Symmetric 2-Arm Bandit; fig. 1a). We first consider a 2-arm bandit, with reward R(a1) = 〈1, 0〉, and R(a2) = 〈0, 1〉.
Here, the unique optimal Markovian policy is π∗W = 〈 12 ,

1
2 〉.
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R(s1, a1) = 〈1, 0〉 R(s1, a2) = 〈0, 1〉

π∗1 = 〈1, 0〉 , π∗2 = 〈0, 1〉
π∗W = 〈 12 ,

1
2 〉

(a) Symmetric 2-Arm Bandit

s1

R(s1, a1) = 〈1, 0〉 R(s1, a2) = 〈0, 1〉

R(s1, a3) = 〈 23 , 2
3 〉

π∗1 = 〈1, 0, 0〉 , π∗2 = 〈0, 1, 0〉
π∗W = 〈0, 0, 1〉

(b) Compromise 3-Arm Bandit

s1

R(s1, a1) = 〈1, 0〉 R(s1, a2) = 〈0, 1〉

s2 s3R
(s

2
, ∗
)=
〈α
, 0
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(s
3 , ∗)=〈0, α〉

π∗1(s1) = 〈1, 0〉 , π∗2(s1) = 〈0, 1〉
π∗W(s1 from s3)=〈 12−

1−γ
2γ α,

1−γ
2γ α−

1
2 〉 or 〈0, 1〉

(c) Asymmetric Start Bandit MDP

Figure 1: Small MDPs that exhibit surprising behavior under multi-beneficiary objectives.

There are several surprises here:

1. The (unique) optimal policy is stationary, but not deterministic, i.e., it is stochastic.
2. Policy iteration iteratively selects the greedy welfare-optimal policy, i.e., selects the policy

π(i) ← argmax
π

W
(
E
π

[R1(s0, a) + γVπ(i−1)

1 (s1)], . . . ,E
π

[Rg(s0, a) + γVπ(i−1)

g (s1)]
)
.

This would be optimal under the (false) assumption that the value function remains fixed, and is convergent for
linear (value) MDP objectives. However, policy iteration for the egalitarian welfare objective, initiated at either
deterministic policy, oscillates between π(s) = 〈1, 0〉 and π(s) = 〈0, 1〉. which leads to repeated overcorrections for
initial policy unfairness, hence the oscillatory behavior.

We now consider an extension, which has a third option, which is not preferable to either beneficiary, but is more effective
as a compromise than any mixture of the first two options.
Example 2 (Compromise 3-Arm Bandit; fig. 1b). We next consider a 3-arm bandit, with reward R(a1) = 〈1, 0〉, R(a2) = 〈0, 1〉,
and R(a3) = 〈 23 , 2

3 〉. The optimal policies for beneficiary 1, beneficiary 2, and the welfare objective, π1 = 〈1, 0, 0〉, π2 = 〈0, 1, 0〉, and
πW = 〈0, 0, 1〉, respectively.

This is perhaps not hugely surprising, but it is notable nonetheless, as it starkly illustrates just how different a welfare
optimal policy may be from any individual beneficiary’s optimal policy. In particular, despite there being unique optimal
stationary policies π∗1 , π∗2 , and π∗W , clearly, π∗W is not a linear combination of π∗1 and π∗2 . Furthermore, at every state, the
probability of selecting any action never exceeds 0 in more than one of these optimal policies. This also has implications
for how the MDP is explored; for instance if beneficiaries one and two are independently allowed to run a UCB-style
algorithm, neither will even bother to fully explore a3, thus even together they don’t collect enough information for
welfare-optimal planning. We thus conclude that not only the planning, but also the exploration aspect of RL must
explicitly consider welfare objectives.

We now extend the 2-armed bandit example by adding two additional states, which represent disparate starting conditions
for the two beneficiaries.
Example 3 (Symmetric 2-Arm Bandit, with Asymmetric Starting Conditions; fig. 1c). This MDP has three states, but once s1

is reached, it is never left, thus becoming a 2-armed bandit.

From s1, neither beneficiary is privileged, but from s2, beneficiary 1 begins by receiving α utility, and from s3, beneficiary 2
begins by receiving α utility. To make things fair, we need to select π(s1) to benefit the underprivileged group, i.e., starting
from s2, have π(s1) choose action 1 with probability x such that γ

1−γx+ α = γ
1−γ (1− x), thus 2 γ

1−γx = γ
1−γ − α =⇒ x =

1
2 −

1−γ
2γ α. This makes sense: larger α need to subtract a larger privilege correction term from 1

2 , and after a certain point,
negative x (which is of course impossible) would be required to compensate for disparate starting conditions.

3 The Fair E3 Algorithm

We now introduce the fair E3 algorithm and bound its sample complexity, thus showing that it is a adversarial fair
adversarial MDP learner. We provide pseudocode in Algorithm 1. The key to understanding the algorithm is that the state
space is divided into three sets: the unknown set Sunk, the outer-known set Sout, and the inner-known set Sinn. Initially, all
states are unexplored, placed in Sunk. After visiting a state and taking all actions sufficiently many times using balanced
wandering [Kearns and Singh, 2002], it is placed in either Sout if with nonnegligible probability ≥ E it is possible to reach
Sunk in ≤ T steps, or Sinn if it is not possible to reach the unknown set with nonnegligible probability. Note that E and T
will be determined so as to ensure adversarial fair MDP learnability.
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Algorithm 1 Fair E3 and the Adversarial Fair MDP Setting

∼ Fair E3 Agent Code ∼

1: procedure AGENTINIT(M = 〈S,A,R,T , γ〉, ε, δ,Rmax)

2: T ← d 1
1−γ ln 3Rmax

ε(1−γ)e; t← 0 . Init. escape time; timer
3: E ← ε

2TRmax
. Compute escape probability threshold

4: M←

ln

(
|S||A| (2|S| − 2 + g)

δ

)
max

(
1

2β2
,

R2
max

2α2

)
5: ∀s ∈ S, a ∈ A : ms,a ← 0 . Per-(s, a) visitation counters
6: Sunk ← S; Sout ← ∅; Sinn ← ∅ . Init. all states to unknown
7: M̂ = 〈S,A, R̂, T̂ , γ〉 ← 〈S,A, s 7→ 0, s 7→ 1s, γ〉
8: end procedure

9: procedure AGENTSTEP(s,W(·))
10: if s′ ∈ Sunk then . Successful escape
11: t← 0
12: return axpr ← argmin

a∈A
ms,a . Balanced walk step

13: end if
14: if t > 0 then . Ongoing attempt to escape to Sunk

15: t← t− 1
16: return axpr ← πesc(s, t) . Explore a from escape policy π
17: end if
18: if s ∈ Sinn then . Return exploit policy
19: return πxpt ← argmax

π∈ΠM

W
(
V̂ π1 (s), V̂ π2 (s), . . . , V̂ πg (s)

)
20: else . s ∈ Sout, begin escape attempt
21: t← T
22: return axpr ← πesc(s, t)
23: end if
24: end procedure

25: procedure AGENTSARSUPDATE(s, a, r, s′)
26: if s ∈ Sunk then
27: ms,a ← ms,a + 1 . Increment visitation count
28: (Es,a,ms,a,S,Es,a,ms,a,R)← (s′, r) . Add to XP buffer
29: if min

a∈A
ms,a = M then . State s is learned

30: ∀a, s : T̂s,a,s′ ←
1

M

M∑
i=1

1s′(Es,a,i,S)

31: ∀a : R̂s,a ←
1

M

M∑
i=1

(Es,a,i,R)

32: πesc ← argmax
π∈ΠT

∑
s∈S

P
(∨T

i=1si ∈ Sunk

∣∣∣π, s1 = s
)

33: Sunk ← Sunk \ {s}

34: Sout ←
{
s ∈ S\Sunk

∣∣∣∣P(∨Ti=1si ∈ Sunk

∣∣∣πesc, s1 =s
)
≥E
}

35: Sinn ← S \ (Sunk ∪ Sout)
36: end if
37: end if
38: end procedure

∼ Fair-Adversarial-MDP Interaction Loop ∼
39: procedure AGENTENVIRONMENTINTERACT(M, ε, δ,Rmax)
40: AGENTINIT(M, ε, δ,Rmax)
41: s← ADVERSARY . Adversarially select initial state
42: while True do
43: W(·)← ADVERSARY . Adversarial welfareW(·)
44: z ← AGENTSTEP(s,W(·))
45: if z ∈ A then . Explore Action
46: s′, r ←M(s, z)
47: AGENTSARSUPDATE(s, a, r, s′)
48: s← s′

49: else if z ∈ ΠM then . Exploit Policy
50: s← ADVERSARY . Adversarial subsequent state
51: end if
52: end while
53: end procedure

As in the classic E3 algorithm, within Sinn, if all Chernoff bounds hold simultaneously, the value functions of the empirical
MDP approximate the value functions of the true MDP, and furthermore, due to a Lipschitz assumption on welfare
functions, optimizing welfare in the empirical MDP ε-optimizes welfare in the true MDP. Therefore, at each time step, if
the agent is in Sinn, it outputs a near optimal policy, otherwise if it is in the outer-known set, it begins an escape attempt,
which either proceeds for T steps or until a state in Sunk is reached; if the agent is in Sunk, it executes an action learning
more about the unknown state, possibly moving it into a known set.
Definition 1. Let TVD(x, y) denote the total variation distance between probability distributions x, y. An (α, β) uniform
approximationM′ = 〈S,A, T ′, R′, γ〉 of a vector-reward MDPM = 〈S,A, T,R, γ〉 is an MDP that satisfies:
1. ∀(s, a) TVD

(
T ′(·|s, a), T (·|s, a)

)
≤ α, & 2. ∀(s, a) |R′(s, a)−R(s, a)| ≤ β.

Lemma 1. Suppose MDPM = 〈S,A,R,T , γ〉, & let

m
.
= M(|S| ,|A| , g,Rmax, α, β, δ)

.
=

ln

(
|S||A| (2|S| − 2 + g)

δ

)
max

(
1

2β2
,

R2
max

2α2

) .

Now if M̂ is estimated from taking each (state, action) pair at least m times, then, with probability at least 1 − δ, M̂ is an α-β
uniform approximation ofM.
Theorem 1. Algorithm 1 ε-δ fair-adversarial-MDP learnsM for all δ ≤ e

2 with sample complexity

mM(. . . ) ≤

⌈
|S||A| ·M(|S| ,|A| , g,Rmax, α,

β
λ ,

δ
2 ) + 3 ln 3

δ

T

⌉
∈ Poly

(
|S| ,|A| , g,Rmax, λ, ε,

1

δ
,

1

γ

)
.
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Essentially, fair E3 differs very little from E3, as it will always seek to explore any state that is reachable with nonnegligible
probability. However, it must explore each state more times than standard E3 to account for learning vector-valued rewards,
and the exploitation aspect changes greatly, as it must output policies that are nearly welfare-optimal, rather than just actions.

4 Discussion

We now note that in sensitive contexts, the decision to learn a policy from scratch is rather radical, and many suboptimal
actions will likely be taken during the learning process. However, this isn’t specific to fairness, but is rather an inherent
problem in reinforcement learning in sensitive settings. In medical contexts, Thomas et al. [2019] learn starting from a
reference policy, and seek to improve the policy while guaranteeing the learned policy is no worse than the reference. While
this is laudable and reasonable in high-risk or sensitive settings, when fairness between groups is a concern, it is inherently a
conservative approach (i.e., one which reinforces the status quo; in some sense comparison to reference is an argumentum
ad traditionem), whereas starting ex-nihilo solely depends on the structure of the MDP and the learning algorithm, rather than
existing societal bias which may be encoded in a reference policy.

Still, we note that suboptimal exploration actions taken during exploration could adversely affect one group or another in
an unfair way, and in practice this is extremely important and should be monitored and controlled for. However, unlike in
some bandit settings, where the cost of exploration may be unfairly borne by one group or another, in our algorithm, the
escape policy and balanced walk actions are both completely independent of the reward structure in the MDP, and are
thus inherently fairness agnostic. We note also that the number of suboptimal actions can be further reduced by a more
careful analysis; for instance the sample complexity of learning transition matrices is much smaller when they are sparse,
admit a factoring, or destination distributions are far from uniform, and the simple complexity of learning rewards is much
smaller when the variance of rewards is also considered, or when per-beneficiary rewards are not-independent. We are
hopeful hopeful that future work will lead to adversarial fair MDP learners that makes fewer suboptimal actions over the
course of learning (i.e., have improved sample complexity).

In Conclusion We motivate and define a welfare-centric concept of fair reinforcement learning. Naïve approaches,
like planning via policy iteration, and turn-based exploration strategies (as in multi-task learning settings) do not yield
successful fair RL agents, even asymptotically. However, we show that under mild regularity conditions on the welfare
function, it is possible to learn in the adversarial fair MDP framework while making polynomially many mistakes
(algorithm 1, theorem 1). Our method adopts the classic E3 algorithm, which is an appropriate fit, as its exploration
strategy is actually independent of the reward function. As a result, the only change we require is attempting each action
more often during exploration to account for the larger number of parameters that must be learned.
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