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♣ Agent is an automaton

♠ No inherent goals or desires

♣ Agent effects beneficiaries in an environment

♠ Measure grounded real-world impact
♠ Each provides subjective feedback
♠ Vector-valued reward Ri(·) and value
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♣ Special case of multi-agent RL:

♠ Agent has multiple actions, constant utility
♠ Beneficiaries have constant action, variable utility

♣ Objective goal from subjective feedback

♠ Treat all beneficiaries fairly, in the sense of welfare optimality
♠ Beneficiaries might not like the policy, but they understand how we came to it
♠ Automated mechanism design for social welfare optimization:
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♣ Agent learns in an environment

♠ Balance exploitation with exploration of beneficiary rewards R and transitions T

♠ Challenges in both learning and planning

Transcending the Egocentric View of Reinforcement Learning

♣ The power-mean for p ∈ R summarizes g values S1:g with weights w1:g as
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♣ Fair welfare requires p ≤ 1, extremes are interesting special cases

♠ p = 1 is weighted sum over groups (well-studied case)
♠ p = −∞ limit is minimum over groups (egalitarian or robust optimization)

♣ Power-means are:

1. Axiomatically Justified
2. Interpretable

Mp(S;w) units match S1:g
3. Stochastically Stable
(for p ∈ [−∞, 0) ∪ [1,∞])

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

1

2

3

4

Power-Mean p

Mp
(
(1, 2, 3); 1

3

)
Mp

(
(1, 2, 3)± 1

2
; 1
3

)

Utilitarian, Egalitarian, and the Power Mean Welfare
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Symmetric 2-Arm Bandit
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Compromise 3-Arm Bandit
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Asymmetric Start Bandit MDP

♣ Optimal policies are in general stochastic

♠ Mixture actions balance preferences across beneficiaries

♣ Welfare-optimal policy may not overlap with per-beneficiary optimal policies

♣ Optimal policy may be contextual

♠ May depend on start state
♠ Markovian policies still always suffice

♣ Planning is surprising even in these trivial examples

♠ Policy iteration can oscillate
♠ Value iteration is nonsensical!

Insight from Illuminating Examples

♣ For fair RL tasks, we want ε-W(·) optimal policies

♠ How do we get there?
♠ What is the learning process?
♠ How do we measure the efficiency of a learner?

♣ “Most” standard RL learning models measure suboptimality of individual actions

♠ PAC MDP, regret bounds, mistake bounds
♠ Accumulate error of actions taken over time

♣ Other learning models are also limiting

♠ “E3-style,” “supervised style”
♠ Only guarantee optimality at a single state

♣ In the fair RL setting:

♠ Impossible to determine whether individual actions are optimal
♠ Optimal policies may all be stochastic!
♠ Start state dependence requires context
♠ We want optimality, but w.r.t. what?

♣ Insufficient to assess fair learners on sequence of individual actions

Challenges in Modelling Efficient Fair Reinforcement Learning

Iteration Start:
At state s

Explore:
Output action a
Observe s, a, r, s′

Exploit:
Output policy π
Observe nothing

Single Step:
s′ ∼ Ts,π(s)

Episodic:
Bernoulli(γ) coin

Common Start:
Distribution S0 over S

Take s′ ∼ S0

Adversarial:
Select s′ adversarially

Tails: s← s′ ∼ Ts,π(s)Heads: Return

s← s′ s← s′

♣ An MDP policy agent obeys the above control flow

♠ At each timestep, explicitly outputs either exploration action or exploitation policy
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Exploit Policy

♠ Learns from exploration actions, evaluated on exploitation policies

♣ A Fair Adversarial KWIK-MDP-Learner must w.h.p.:

1. Take a bounded number of exploration actions
2. Output only exploitation policies that are ε-optimal

♣ Our adversary model

♠ Selects W(·) functions
♠ Picks successor state s′ after exploitation steps
♠ Can not disturb agent during exploration!
♠ Flexibly generalizes many learning models without sacrificing learnability

An Adversarial Model of Efficient Fair Reinforcement Learning
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State Category Known Reachable
Inner Known Sinn — Ts,·,Rs Not Sunk
Outer Known Sout - - Ts,·,Rs Any
Unknown Sunk · · · Not Ts,·,Rs Any

Known: Rewards and transitions sufficiently well-estimated
Reachable: Can reach with some probability in short time

The Fair E3 Algorithm:
Agent explores in Sout,Sunk, exploits in Sinn

Exploration tries to reach Sunk

Exploitation outputs apprx. W(·)-optimal policy

Visualization of Sinn, Sout, & Sunk

Fair E3: An Algorithm for Fair Reinforcement Learning
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