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Insight from Illuminating Examples \ An Adversarial Model of Efficient Fair Reinforcement Learning

& Agent is an automaton “ ( \ R(s1,a1) = (1,0) R(sy,az) ={0,1) R(sy,a1) = (1,0) R(s1,as) = (0,1) R(s1,a1) = (1,0) R(s1,a2) = (0,1) Iteration Start: ]j R,
& No inherent goals or desires ‘ \ At state s J \
o . | 0% 7 i :
& Agent effects beneficiaries in an environment : } Explore: Exploit: Common Start:
& Measure grounded real-world impact R(s1,a3) = (2, 2) Output action a Output policy m ———| Distribution Sy over S
/ g /
& Each provides subjective feedback Observe s,a,r, s Observe nothing Take s’ ~ Sy

o ot o x _ T Gy
& Vector-valued reward R;(-) and value i L0 1 21 0.1 il 0 O L0 irl(gl) o : IT_Q(Sl)l_ < z % ; - . .
T = (5, 5) my = (0,0,1) Ty (51 from 83) = (5 — e, Fra—35) or (0,1) Single Step: Episodic: Adversarial:
=5 ' ~ T n(s) BERNOULLI(7) coin Select s" adversarially
Vi(s)=E Zyt IR (s¢, m(s¢)|s1 = s, Symmetric 2-Arm Bandit Compromise 3-Arm Bandit ~ Asymmetric Start Bandit MDP . &
=1
; HEADS: Return TAILS: s 5" ~ T, (5

& Optimal policies are in general stochastic

& Special case of multi-agent RL: & An MDP policy agent obeys the above control flow

& Mixture actions balance preferences across beneficiaries

& Agent has multiple actions, constant utility & At each timestep, explicitly outputs either exploration action or exploitation policy

& Welfare-optimal policy may not overlap with per-beneficiary optimal policies

& Beneficiaries have constant action, variable utility % R A U 4
& Objective goal from subjective feedback % Optimal policy may be conteztual DECISION SPACE  EXPLORE ACTION  ExpLoIT PoLicY
N e & May depend on start state & Learns from exploration actions, evaluated on exploitation policies
)
& Beneficiaries might not like the policy, but they understand how we came to it 7 Bl poteies Eall G s BliTioe & A Fair Adversarial KWIK-MDP-Learner must w.h.p.:
& Automated mechanism design for social welfare optimization: & Planning is surprising even in these trivial examples 1. Take a bounded number of exploration actions
; ﬁ 2 5 . & Policy iteration can oscillate 2. Output only exploitation policies that are e-optimal
Select 7 s.t. W <V1 (s0),--- ,Vg(so)) > argmax W (Vl N (so)> € : e i
T & Value iteration is nonsensical! & Our adversary model

Agent 1 i i t . . . . . - & Selects W(-) functions
% Beul s 0 80 snvonien Challenges in Modelling Efficient Fair Reinforcement Learning : ©) B
itati i ; i iti & Picks successor state s’ after exploitation steps

& Balance exploitation with exploration of beneficiary rewards R and transitions T'
& Challenges in both learning and planning & For fair RL tasks, we want e-W(-) optimal policies & Can not disturb agent during exploration!

\ / & How do we get there? & Flexibly generalizes many learning models without sacrificing learnability

Utilitarian, Egalitarian, and the Power Mean Welfare \ & What is the learning process? 2

Fair £3: An Algorithm for Fair Reinforcement Learning

: ?
& The power-mean for p € R summarizes g values S1.4 with weights w14 as & How do we measure the efficiency of a learner?

g & “Most” standard RL learning models measure suboptimality of individual actions ‘
s Hgl“’l ; State Category Known Reachable
PAC MDP t bound take bound
ol o , regre Oun.S, mistaxe oun' 8 : _ Inner Known S, T, R, Not Sunk
& Fair welfare requires p < 1, extremes are interesting special cases # fccomutlate ertor of gchions taken oyer fime : K Outer Known Soyt - - T, R, Any
; R 816 Unknown Sunk --- | Not Ts ., R Any
& p =1 is weighted sum over groups (well-studied case) & Other learning models are also limiting _
B ot e I 2 b e 3 P “E3 S e Laes O )V Known: Rewards and transitions sufficiently well-estimated
# p = —oo limit is minimum over groups (ega ltarian or robust Optlmlza‘tlon) Y€, PEEy Y 835 Reachable: Can reach with some probability in short time

& Only guarantee optimality at a single state
& Power-means are: 4

L L T T T T T T T

—r Mp((172,3)7 %) & In the fair RL setting:

,(——)534 The Fair E? Algorithm:

1. Aziomatically Justified 7\ Agent explores in Sout, Sunk, exploits in Sinn

9. Interpretable & Impossible to determine whether individual actions are optimal

M, (S; w) units match Si.q4
3. Stochastically Stable
(for p € [—00,0) U [1, 00])

Optimal policies may all be stochastic!
e . J Exploration tries to reach Sk

& Start state dependence requires context

Exploitation outputs apprx. W(:)-optimal policy

& We want optimality, but w.r.t. what?

PoverMeanip & Insufficient to assess fair learners on sequence of individual actions Visualization of Si.,, Sout, & Sunk
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