On We(lfare-Centric Fair Reinjorcement [earning

NG
Cgrus Cousins

R

Reinforcement Universityof T
P gdrng Massachgsetts ﬁ“ﬁ&%«,
Ambherst Osges

WWW . Cyruscousins.online/projects/rlfairness/



https://www.cyruscousins.online/projects/rlfairness/home.html

What is Group-Fair Reinforcement Learning?

> Agent

in world &) receives vector-valued reward R(s, a) € RY from g beneficiaries

» Beneficiaries represent impacted parties: Individuals, entities, groups, etc.
» Reward encodes their response to

—

&% s@s Sk

-&) interactions

-

____________ e

_1 2/13




What is Group-Fair Reinforcement Learning?

» Agent A in world & receives vector-valued reward R(s, a) € RY from g beneficiaries
» Beneficiaries represent impacted parties: Individuals, entities, groups, etc.
» Reward encodes their response to A-&) interactions

—

*d

- Yes! +3
sn (8@s)| S%w_ |- &N 2
PR & Maybe!  +0

— ’

2/13



What is Group-Fair Reinforcement Learning?

» Agent A in world & receives vector-valued reward R(s, a) € RY from g beneficiaries
» Beneficiaries represent impacted parties: Individuals, entities, groups, etc.
» Reward encodes their response to A-&) interactions

» Optimize not the value of what A wants, but the welfare of beneficiary value functions

<_ *** —’ o Ves! +3
sx (8@e| on | - &Na

e &l\/laybe! +0

Objective:

............ S >@ argerrﬁaxw (z — }‘;35 Li:; Y'Ri(st,m(5t)) 50})

: Geometrically discounted reward

2/13




Reject Egocentricsm

Egocentric Uiewpoint

> A acts in @, and & responds
» Scalar reward R(s, a) is intrinsic to

> Rational agents selfishly optimize value

|

argmax E {Zv (s, m(st))

TFEH 8

3/13



Reject Egocentricsm

Egocentric ‘Diewpoint Altruistic ‘Diewyoint

> A actsin @), and & responds » A's actions in @& impact beneficiaries
» Scalar reward R(s, a) is intrinsic to » Vector reward R(s, a) quantifies impact
» Rational agents selfishly optimize value » Altruistic agents optimize societal welfare

gelll T3

B {Zv (s, 7(s2))

30] argmax W ( - [Z Y'Ri(se, (1))

mell

)

3/13



What is a Welfare Function?

» Given g beneficiaries
> Utility (value) vector v € R,

v=(Aedd, Ay, 77)

4/13



What is a Welfare Function?

» Given g beneficiaries
> Utility (value) vector v € R,

v=(drded, Rty 1)

o ."i:r/}ffgi,
: g g N n"ig g
> W(v): Ry, —> ROJF aggregates utility i, ’wl.”f"
across beneficiaries N7
. 3 41
» \Welfare functions encode social values 3
/)
7;,7 — T
952
L5
)

4/13



What is a Welfare Function?

» Given g beneficiaries

> Utility (value) vector v € R,

v=(drded, Rty 1)

I /;ﬂg‘ —— o f i’p 2 7 £ i :2"5 L‘;"j:r/}ffgj
- 2 " 1 - e
. q g Wi W oy | A p 0] ”n‘ gl
> W(v) : Ry, — Ro; aggregates utility i} 0 | % SRR
9,22 . gl°
across beneficiaries i o z
: ; i BBV ¥l
» Welfare functions encode social values +
» Common welfare functions =~
g TR
i 2ol 952
» Utilitarian: W;(v) = — E v; G
i=1 7
B EBodnoianm N e

» p Power-Mean: W, (v) =

4/13



Even Bandits are Tricky!

“Compromise” 3-Armed Bandit
R(Sl, al) = <1, 0> R(Sl, CIQ) = <0, 1>

:R,(Sl7 Clg)

wino

(

wiro
~

5/13



Even Bandits are Tricky!
“Compromise” 3-Armed Bandit

Ris, )= LD R(s1, a2) = (0,1) w — (1,00
= (01,0
T = (0,0,1)

R(s1, a3) = (§, %) Beneficiary policies 7' and 7% and

fair policy ™ are completely disjoint!

5/13



Even Bandits are Tricky!
“Compromise” 3-Armed Bandit

Ris, )= LD R(s1, a2) = (0,1) w — 100
= (01,0
T = (0,0,1)

R(s1, a3) = (g, %) Beneficiary policies 7' and 7% and

fair policy ™ are completely disjoint!
If v > %: Egalitarian policy iteration oscillates indefinitely

AOH) W <z s E [Ri(so,ﬂ(so)) it yv;f(“(sl)D

mellpm ™81

7(s) = (1,0,0) 7(s) = (0,1, 0)

5/13



Even Bandits are Tricky!
“Compromise” 3-Armed Bandit

Ris, )= LD R(s1, a2) = (0,1) w — 100
= (01,0
T = (0,0,1)

R(s1, a3) = (g, %) Beneficiary policies 7' and 7% and

fair policy ™ are completely disjoint!
If v > %: Egalitarian policy iteration oscillates indefinitely

iy argmax W_ <z — E [Ri(so,ﬂ(so)) + 7V?(w(sl)})

m(s) = (1,0,0) m(s) = (0,0,1) m(s) = (0,1,0)
V(s) = (5,0) VT (s) = (22, 28 V7(s) = (0, &)

5/13



Overcoming Initial Disparity

“Asymmetric Start Bandit” MDP
R(Sl, al) = <1, O> R(Sl, GQ) = <0, 1)

6/13



Overcoming Initial Disparity

“Asymmetric Start Bandit” MDP

R(Sla al) = <170> R(Sla 0,2) = <07 1) WI(SI) o <170>
Tile (01

(81 from 52) <% o 1[17 C, % + 12;'YC>

Qv\iaq," )Cj T (81from53> <%+1%7(’%_%YC>

Fair policy 7* is start-state dependent!

6/13



Overcoming Initial Disparity

“Asymmetric Start Bandit” MDP

R(s1, 1) = (1,0) R(s1,02) = (0, 1) ' (s1) = (1,0)
m(s1) = (0,1)
W*(Sl from $2> == <% ko 1;\;/ C, % + 12_—,YFYC>
: * o 1—- 1—
Q\,\iﬁ) o T (81from53>— <%+Tj(’%_#c>

Fair policy 7* is start-state dependent!

Lemma (Optimality of Stationary Policies)

For any start state sy € S, there exists some W (-)-optimal policy
7 € argmax W (V’f(so), L ,V;r(so))
mellag

that is a stat/onary ( Markowan ) stochast/c pollcy

6/13



On Planning

» Policy lteration
X Nonconvergent; can oscillate indefinitely



On Planning

» Policy lteration
X Nonconvergent; can oscillate indefinitely

» Value Iteration
» With what Bellman operator?

/\ Many obstacles here:
X Beneficiaries each have their own value function V.4, but not their own policy

X No greedy-optimal substructure (start-state dependence)



On Planning

» Policy lteration
X Nonconvergent; can oscillate indefinitely

» Value Iteration
» With what Bellman operator?

/\ Many obstacles here:
X Beneficiaries each have their own value function V.4, but not their own policy

X No greedy-optimal substructure (start-state dependence)

Planning with geometrically-discounted state-action occupancy frequencies

Z d; .Ri(s, a), Z d; .Ro(s,a), .. Z ds.R,(s, a)

d* =argmax W
dejoA s€S,aeA s€S,ac A sGS,aE.A
such that Vs € S : Z dso = Ds+ 7 Z Py(s, ad)dy

acA s'eS,a’e A
Take 7*(s,a) x d;, forallse€ S, ac A

Approximately optimize 7#* with convex programming



Regret and Mistakes

» Optimal policy is stochastic, can't assess individual actions

© Assess regret of welfare of agent policies 71, ..., 7t

Regret(T) = (W (Vi (s1)) = W (Vﬁt(st)))

M=

=1

I

8/13



Regret and Mistakes

» Optimal policy is stochastic, can't assess individual actions

L Assess regret of welfare of agent policies 7t1,..., 7
T
Regret(T Z( W (V™ (s)) = W (Vﬁt(st)))
t=1

» When should we evaluate the agent?
X Incoherent to take s;y1 ~ 7¢(s¢)

» Geometric discounting suggests geometric episode length
» Unfair to execute each 74(s;) (start-state dependence)

Episodic: End episode, draw s;.; from start-state distribution

8/13



Regret and Mistakes
X —

» Optimal policy is stochastic, can't assess individual actions

L Assess regret of welfare of agent policies 7t1,..., 7
T
Regret(T Z( V”t (s1)) — W (Vf”(st)))
t=1

» When should we evaluate the agent?
X Incoherent to take s;y1 ~ 7¢(s¢)

» Geometric discounting suggests geometric episode length
» Unfair to execute each 74(s;) (start-state dependence)

Episodic: End episode, draw s;.; from start-state distribution
> A policy 7 is a mistake at s if W (V™ (s)) — W (V7(s)) > ¢

X Exploration actions are probably mistakes
Can exploitation confidently avoid mistakes?




Learning Model: KWIK-AF

( The KWIK-AF Learner |

T

E(now— What-It-Knows k Udversarial—Fair &

» KWIK Learner: At each step, in state s, A can either
1. Output an e-optimal exploitation policy mypt
X With probability at least 1 — ¢, for all time
X No mistakes: W (V™ (s)) — W (V™ (s)) > ¢
2. Output an exploration action a

v/ Receive (s, a,r,s’) tuple, return control to agent in
X Limited budget: Only m (S| ,|A|, 7, Rmax 9, €, 9) exploration actions

9/13



Learning Model: KWIK-AF

( The KWIK-AF Learner |

T

E(now— What-It-Knows k Udversarial—Fair &

» KWIK Learner: At each step, in state s, A can either
1. Output an e-optimal exploitation policy mypt
X With probability at least 1 — ¢, for all time
X No mistakes: W (V’rs*(s)) — W (V™i(s)) > ¢
2. Output an exploration action a
v/ Receive (s, a,r,s’) tuple, return control to agent in
X Limited budget: Only m (S| ,|A|, 7, Rmax 9, €, 9) exploration actions
» Adversarial-Fair: A must be flexible and robust
» Optimize adversarially selected welfare function Wy(-) at each step
» When A outputs a policy mypi:

/\ Move A to adversarial s', provide no feedback!
9/13



a mistake.
< \V e

| ()
: \




E*: The Equitable Explicit Explore Exploit Algorithm

> Partition state space into three sets: Synk, Sout, Sinn S251 2,2&‘ S0

» Unknown S,,;: Insufficient samples (< myyy) to 524 : y fflﬁ;:‘
estimate reward R(s, a) and transition P(s)

:.Sg(;} .;--': Sgg
~--'$:'531.._>;'532.-2 g

11/13



E*: The Equitable Explicit Explore Exploit Algorithm

» Partition state space into three sets: Sunk, Sout, Sinn : :l's;gf Szijsmﬂsmr\ :
» Unknown S,,;: Insufficient samples (< myyy) to ' N )
estimate reward R(s, a) and transition P(s)
» Quter-Known S,,;t: Some escape policy Tes. can
reach Sy, in T steps with probability at least £

:S30:

R O o

11/13



E*: The Equitable Explicit Explore Exploit Algorithm

> Partition state space into three sets: Suuk, Sout, Sinn s 2,2&‘ S0
» Unknown S, Insufficient samples (< my,y) to o oy 50

estimate reward R(s, a) and transition P(s)
» Quter-Known S,,;t: Some escape policy Tes. can
reach Sy, in T steps with probability at least £
» Inner-Known S;,,,: No policy can reach Sy in T'
steps with probability at least F

:S30:

R O o

11/13



E*: The Equitable Explicit Explore Exploit Algorithm

522 <7521 150

» Partition state space into three sets: Sunk, Sout, Sinn )/523K & - Sznr\
» Unknown S,,;: Insufficient samples (< myyy) to 324_.~ ' ‘{/ (\' ‘_51‘;_\/
estimate reward R(s, a) and transition P(s) ey N sls\
» Quter-Known S,,;t: Some escape policy Tes. can 54\/’ / @ f(\, i
: ; G :SZGH > @ 15,5 ,‘ ; :Sn=
reach Sy, in T steps with probability at least £ o : g
» Inner-Known S;,,,: No policy can reach Sy in T' ;;;%; o @ CiSie:
steps with probability at least E Wi i
» Learning moves states from Sy — Sout — Sinn 828& Sigh "’/'\_&;3
o

11/13



E*: The Equitable Explicit Explore Exploit Algorithm

» Partition state space into three sets: Sunk, Sout, Sinn 1:.523‘5( ‘S_Q_f&j_szl“smr\
» Unknown S,,;: Insufficient samples (< myyy) to 324_.~ ' ‘{/ 3 ‘51‘;_\/
estimate reward R(s, a) and transition P(s) "/3“)/ \Zsff‘\" (513
» Quter-Known S,,;t: Some escape policy Tes. can (%) B i
v . oy SQGHSll\ : @ = S /\ i 1517'=
reach Sy, in T steps with probability at least £ 5 e
» Inner-Known S;,,,: No policy can reach Sy in T' 527 oo @ .: 515
steps with probability at least E Mol ik
» Learning moves states from Sy — Sout — Si 2 Ly 525
g unk out inn A e /&)sz 47\
~ The E* Algorithm ~ "2:;:5'3'4
1. If in Sunk: Explore, observe (s, a,r,s'), o
update empirical MDP M, update S,ui, Sout, Sinn “f“_“ﬁ‘ "fjf‘f?f: UpdateO

2. If in Soui: Begin escape attempt (follow 7ege for T steps)

Tese — argmax g =2 ( \/51; & Suik
wellr €S Sip1~P (s, (s,t)) N .

80:5>

3. Otherwise in Sy, Output exploit policy myp +— argmax W(V”(s))
mellpg 11/13



E* Theory

Lemma (Explore- Exploi

At any point in the execution of E*, A can act effectively:
1. Can exploit from Si,,
2. Can explore directly from S,y

3. Can explore indirectly from S, (escape succeeds with some probability)




E* Theory

Lemma (Explore-Exploit)
At any point in the execution of E*, A can act effectively:
1. Can exploit from Si,,
2. Can explore directly from S,y
3. Can explore indirectly from S, (escape succeeds with some probability)

Theorem (E is a KWIK-AF Learner)

E* is a KWIK-AF learner w.r.t. the class of all \M|-||, Lipschitz-continuous welfare
# functions, with exploration budget

(|S| ’Al 77 maxag,E 5) & O <|S‘ |A| (ARmax logl(g‘(];l{m?;s)) log|8||A|g)

C Poly (\SI JJAL, 12, Rimax; log 9, 3, l0g 3, A)




In Summary

» From Egocentric to Altruistic Agents
» Agent A acts in &), impacting beneficiaries
» Vector-valued (per-beneficiary) reward R(s, @)
» Social planner’s problem:

> Optimize welfare of value functions argmax W (V" (s)) [
well




In Summary

» From Egocentric to Altruistic Agents
» Agent A acts in &), impacting beneficiaries
» Vector-valued (per-beneficiary) reward R(s, @)
» Social planner’s problem:

> Optimize welfare of value functions argmax W (V" (s)) [
well

» KWIK-AF: A Model of Fair RL

» Adversarial flexibility
» Societal welfare objectives
» No mistakes from bounded exploration




In Summary

» From Egocentric to Altruistic Agents
» Agent A acts in &), impacting beneficiaries
» Vector-valued (per-beneficiary) reward R(s, @)
» Social planner’s problem:

> Optimize welfare of value functions argmax W (V" (s)) [
well

» KWIK-AF: A Model of Fair RL

» Adversarial flexibility
» Societal welfare objectives
» No mistakes from bounded exploration

» Efficient Learning and Planning
» KWIK-AF learn with E*
» Plan with convex programming on state-action measure
» Polynomial exploration budget, time complexity




	

