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Abstract
I introduce novel concentration-of-measure bounds for the supremum de-
viation, several variance concepts, and a family of game-theoretic welfare
functions. In particular, I introduce empirically centralized Rademacher
averages to derive novel probabilistic data-dependent bounds on the supre-
mum deviation (SD) of empirical means of functions in a family F from
their expectations (i.e., supf∈F

∣∣Ê[f ]− E[f ]
∣∣), with optimal dependence

on the supremum variance and the function ranges. Theoretically, the
gaps between upper and lower bounds on the SD are much smaller with
(empirical) centralization, with asymptotically improved dependence on
various quantities of interest, and experimentally, I find that centralization
improves various bounds to the SD.

I also give axiomatic justification of the power mean family of welfare
functions, and introduce the concept of malfare, which measures group
ill-being (instead of wellbeing), and shares the axiomatic justification of
welfare. Malfare is a natural target in machine learning problems where
we minimize (negatively connoted) loss, rather than maximize (positively
connoted) utility. Surprisingly, welfare and malfare are not equivalent,
essentially because the class of welfare (malfare) functions is not closed
under negation or affine transformation. I then show statistical estimation
guarantees for welfare and malfare, and develop a unified theory of fair
machine learning, termed fair PAC-learning, in which polynomial samples
are sufficient to provably ε-δ learn fair models. Finally, I cast a streaming
media codec selection problem as a fairness-sensitive learning problem. I
explore, both experimentally and theoretically, multivariate welfare and
Pareto optimality concepts, and how the bias complexity tradeoff manifests
in multivariate settings and with fairness issues.

Future work will investigate fair PAC-learning of generalized linear
models, with experimental comparison to alternative fair learning tech-
niques. Additionally I will apply my novel uniform convergence bounds
to various sampling and data science problems, to show decreased sample
complexity, thus more computationally efficient sampling algorithms.

i



Contents

Prelude 1
1 Concentration of Measure and Uniform Convergence Bounds 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Empirical centralization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Uniform convergence bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Fairness with Population Means: Malfare and Welfare 12
2.1 Quantifying Population-Level Sentiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Axioms of Cardinal Welfare (or Malfare) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 The Power Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Properties of Welfare and Malfare Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 A Comparison with the Additively Separable Form . . . . . . . . . . . . . . . . . . . . . . 17
2.1.5 Relating Power Means and Inequality Indices . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Welfare and Fairness in Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Statistical Estimation and Learning Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Characterizing Fair Learnability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Ewoks: an Algorithm for Fair Codec Selection 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 The Ewoks Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Welfare-Optimal k codec Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Empirical Welfare Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Generalization Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Linear Loss Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Experimental Evaluation of Ewoks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Data-Dependence and Pareto Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Fairness and Welfare-Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.3 Uniform Convergence Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4 Conclusion 37
Bibliography 38
A Supplementary Material for Chapter 1 41

A.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.2 Details on the Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.2.1 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.2.2 Supplementary Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

ii



Prelude
This thesis is organized roughly into 3 main parts. We first discuss purely statistical and learning
theoretic work in chapter 1, mainly deriving new ways to bound uniform convergence of the empirical
mean of each f ∈ F to its expectation, with brief allusions to how these results are relevant to problems in
statistical estimation, machine learning, and data science. In my final thesis (absent from this proposal),
this part will be followed by novel techniques in data science, informed by the statistical methods of
chapter 1. Finally, in chapter 2, I apply the statistical methods of chapter 1 to fairness in machine
learning. I argue that this is a particularly important setting for rigorous statistical learning guarantees,
as overfitting has significant real-world implications to fairness and justice. I also show that, by its
nature, uniform convergence techniques is particularly well-suited to answer inherently-multivariate
fairness questions.

Statistical methods, concentration of measure, and uniform convergence The highly theo-
retical work of chapter 1 is key to the success in the data science and fair machine learning domains.
Furthermore, this work in concentration of measure and uniform convergence is key to understanding and
assessing the quality of our solutions in the pattern mining, data science, and fairness settings, as the
basic statistical estimation themes echo throughout in various forms. Throughout the work we maintain
a running metaphor of sub-Gaussian and sub-gamma bounds, and describe how, in most cases we can’t
expect to beat the sub-Gaussian bound, which are asymptotically equivalent to sub-gamma bounds.

For some function f , we are interested in the convergence of the empirical mean Ê[f ] on m samples
to its expectation E[f ]. The Central Limit Theorem (CLT) tells us that Ê[f ] is asymptotically Gaussian,
thus by the Chernoff bound for the Gaussian distribution, we have

lim
m→∞

P

∣∣∣E[f ]− Ê[f ]
∣∣∣ ≥

√
2V[f ] ln 2

δ

m

 ≤ δ .

[Devroye et al., 2016] show matching finite-sample lower-bounds for any mean estimator, thus the best
bounds we can hope to achieve should be on par with the above. This class of bound is generally called
sub-Gaussian, with V[f ] replaced by various variance proxies. If we restrict our attention to bounded f ,
i.e., f ∈ X → [a, b], where r

.
= b− a, Hoeffding’s inequality [Hoeffding, 1963] states

P

∣∣∣E[f ]− Ê[f ]
∣∣∣ ≥

√
r2 ln 2

δ

2m︸ ︷︷ ︸
Variance Term

 ≤ δ .

Here the sub-Gaussian variance proxy is r2

4 , which by Popoviciu’s inequality, is the worst-case variance
of any range r random variable. Bennett’s inequality [Bennett, 1962] tells us that

P

∣∣∣E[f ]− Ê[f ]
∣∣∣ ≥ r ln 2

δ

3m︸ ︷︷ ︸
Scale Term

+

√
2V[f ] ln 2

δ

m︸ ︷︷ ︸
Variance Term

 ≤ δ ,

which yields the desired variance dependence, at the cost of a fast-decaying scale term. As such, the
bound is sub-gamma [see Boucheron et al., 2013, chapter 2], rather than sub-Gaussian. We may thus
view the scale term as a finite-sample correction to a sub-Gaussian bound.

Our uniform convergence bounds then apply simultaneously to large sets of functions, which translate
to various guarantees on generalization error, estimation quality, and fairness. The natural comparison is
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to Hoeffding’s inequality with a union bound over F , which tells us that

P

sup
f∈F

∣∣∣E[f ]− Ê[f ]
∣∣∣ ≥

√
r ln 2|F|

δ

2m

 ≤ δ .

Despite its weaknesses, this result powers many sample complexity guarantees in computer science.
The principal aim of chapter 1 is to show that in many applications, we may nearly match variance-

sensitive lower-bounds or Bennett’s inequality. We defer formal definitions of Rademacher averages
to chapter 1, but to briefly preview, we shall see that centralized Rademacher averages also play a
fundamental role in lower-bounding sample complexity, which we rigorously realize through the novel
empirical centralization strategy. We also show bounds that minimally depend on extraneous quantities,
such as ranges and raw-variances, while depending on centralized Rademacher averages and (centralized)
variances (as asymptotically necessary). Furthermore, in practice it is often unreasonable to assume
variances and other properties beyond ranges are known a priori, so we additionally show that variances,
Rademacher averages, and all relevant statistics may be bounded w.h.p. from a finite sample.

Characterizing fair machine learning, with statistical guarantees In chapter 2, I define a novel
concept of fairness based on the idea of the social planner’s problem in welfare theory. While a welfare
function W(. . . ) summarizes overall wellbeing (e.g., income, happiness, or life expectancy) across a
population, I introduce the parallel notion of malfare W

(. . . ), which summarizes overall illbeing (e.g.,
suffering, harm, or disease); both described in definition 2.1.1. Naturally, we seek to minimize malfare in
learning problems (often posed as mechanism design problems) where one would generally maximize
welfare. We justify this fairness concept via the same axiomatization as welfare theory. Although the
decision to minimize harm seems like a macabre twist on maximizing utility, and they share an axiomatic
justification, surprisingly, the two concepts are in general not isomorphic.

In this framework, lemma 2.3.1 shows highly generic conditions under which malfare and welfare
concepts can be estimated from a sample, i.e., I address the evaluation problem. I then generalize the
notion of PAC-learnability to fair PAC-learnability (definition 2.3.4) to optimize these objectives, rather
than the empirical risk of a single distribution, and show sufficient conditions under which a model
is fair-PAC-learnable. Finally, I also show data-dependent generalization bounds using Rademacher
averages that are on-par with our state-of-the-art statistical learning methodology of chapter 1.

In chapter 3, I perform an extended study in codec selection, i.e., selecting a set of media encodings
(trading off between fidelity and bandwidth) to satisfy a diverse population of users. This is an accessibility
issue, as it concerns optimizing a system to make it usable and useful to groups with varying desiderata.
In particular, I define and analyze the Empirical Welfare-Optimal k codec Selection (Ewoks) algorithm,
showing rigorous data-dependent generalization guarantees, ensuring fairness not only on the training
data, but also on the underlying data distribution. I show how to optimize for and consider the multivariate
nature of various fairness issues (e.g., welfare optimization and Pareto optimality).

I note that while fair-learning via empirical welfare maximization (EWM) and empirical malfare
minimization (EMM) are analogous to learning via empirical risk minimization (ERM) [Vapnik, 1992],
there are some key differences, and neither EWM nor EMM reduces to ERM. In general, empirical welfare
and malfare are biased estimates of true welfare and malfare (respectively), whereas empirical risk is an
unbiased estimate of true risk, making even evaluating a single model more challenging. Furthermore,
while the ERM function is an M -estimator, the EWM and EMM functions are not (due to nonlinearity
in malfare or welfare functions), which complicates understanding generalization error. Despite these
differences, I show high-probability bounds on welfare and malfare, and generalization guarantees using
well-known concentration inequalities and Rademacher averages, thus the additional statistical challenge is
not insurmountable. Similarly, while I show conditions under which fair-PAC-learning is computationally
tractable, many of which resemble standard conditions for traditional PAC-learning, it remains an open
question which (if any) classes of model are PAC-learnable but not fair-PAC learnable.
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Chapter 1

Concentration of Measure and Uniform Conver-
gence Bounds
1.1 Introduction

The supremum deviation of the empirical means of functions in a family F ⊆ X → [a, b] ⊂ R from their
expectations is a key object in the study of empirical processes [Pollard, 1984]. Formally, let D be a
distribution on the domain X and x = {x1, . . . ,xm} be a collection of m independent samples from D.
The Supremum Deviation (SD) of F on x is the quantity

SD(F ,x) .
= sup

f∈F

∣∣∣∣Êx[f ]− E
D
[f ]

∣∣∣∣ , where Ê
x
[f ]

.
=

1

m

m∑
i=1

f(xi) .

The sample-dependent Empirical Rademacher Average (ERA) R̂m(F ,x) of F on x and its expectation,
the Rademacher Average (RA) Rm(F ,D) of F [Koltchinskii, 2001, Bartlett and Mendelson, 2002], imply
bidirectional bounds on the SD (see equation 1.1.2). Let σ be a collection of m independent Rademacher
variables (i.e., uniform on {−1, 1}). These two quantities are defined as

R̂m(F ,x) .
= E

σ

sup
f∈F

∣∣∣∣∣∣ 1m
m∑
i=1

σif(xi)

∣∣∣∣∣∣
 , and Rm(F ,D) .

= E
x

[
R̂m(F ,x)

]
. (1.1.1)

The RA controls the finite-sample expected SD as [Van der Vaart and Wellner, 1996]

1
2Rm(F ,D)− 1√

m
sup
f∈F
‖f‖∞ ≤ E

x
[SD(F ,x)] ≤ 2Rm(F ,D) . (1.1.2)

Probabilistic deviation bounds can be obtained by studying the convergence properties of the SD, and
sample-dependent versions use the ERA and its deviation from the RA (see also theorem 1.3.2). The
dependence on the maximum q

.
= supf∈F‖f‖∞ of F makes the lower bound unsatisfactory, as this

quantity can be very large. This downside is particularly evident at relatively small sample sizes, which
are actually the most interesting in practice. As uniform convergence bounds are now used not “just” for
the theoretical analysis of the performance of learning, but also to develop randomized approximation
algorithms for many tasks [Riondato and Upfal, 2015, 2018, Pellegrina et al., 2019, Areyan Viqueira
et al., 2019, Pellegrina et al., 2020], we believe it is extremely important to derive practical bounds
to the SD that are optimized not just in terms of the number of samples, but also of other important
parameters, such as the maximum and the wimpy variance (see equation 1.3.1). In this work, we use
various forms of centralization to develop such practical bounds. Define the distributional centralization
CD(F) w.r.t. D as the family

CD(F)
.
= {x 7→ f(x)− E

D
[f ], f ∈ F} . (1.1.3)

CD(F) contains one function g for each f ∈ F , such that g is f shifted by its expectation w.r.t. D, thus,
ED[g] = 0 for each g ∈ CD(F). The Rademacher Average Rm(CD(F),D) of CD(F) sharply controls the
finite-sample expected SD as [Boucheron et al., 2013, Lemma 11.4]

1
2Rm(CD(F),D) ≤ E

x
[SD(F ,x)] ≤ 2Rm(CD(F),D) . (1.1.4)
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Comparing equation 1.1.2 and equation 1.1.4, it is evident that the RA could be an arbitrary large
multiplicative factor away from the expected SD, especially at small-sample regimes or when the maximum
q of F is large. The RA of the distributional centralization instead is always at most a multiplicative
factor two away in both directions. Distributional centralization is therefore already known to be
beneficial in the expected case, but can this gain be generalized to the probabilistic case, possibly using
only sample-dependent quantities?

Contributions. In this work we introduce the use of empirical centralization to derive practical,
probabilistic bounds to the SD. Our bounds exhibit a better or no worse dependence on important
parameters such as the wimpy variance, the range (see equation 1.2.2), and the sample size m (see
theorem 1.3.3). We also show that the dependence on the wimpy variance that we obtain is optimal
(lemma 1.3.4 and corollary 1.3.5). We introduce a novel empirical counterpart to the RA of the
distributional centralization which uses empirical centralization to bound the SD. We analyze the bias of
this quantity (lemma 1.2.1) and derive its concentration properties (theorem 1.2.2) using tail bounds
for self-bounding functions [Boucheron et al., 2000, 2009]. In order to obtain fully-sample-dependent
bounds, we introduce a Monte-Carlo estimator with sharp deviation bounds (theorem 1.3.7), and we
also develop novel tight bounds for the empirical wimpy variance (theorem 1.3.1), which we believe
to be of independent interest (e.g., in matrix concentration inequalities for estimating eigenvalues of
covariance matrices). The results of our experimental evaluation show the advantages of centralization:
the computed bounds to the SD are much smaller than those computed without centralization, even at
small sample sizes. All proofs are relegated to appendix A.1.

1.2 Empirical centralization

We define the empirical centralization Ĉx(F) of F w.r.t. the sample x ∈ Xm as

Ĉx(F)
.
= {x 7→ f(x)− Ê

x
[f ], f ∈ F} .

This quantity is an empirical counterpart to the distributional centralization CD(F) of F (see equa-
tion 1.1.3). The key quantity that we use to derive the sample-dependent probabilistic bounds to the SD
(section 1.3) is the ERA of the empirical centralization of F , i.e., the quantity

R̂m(Ĉx(F),x) .

This quantity is completely dependent on the realized x, even more, in some sense, than a “standard”
ERA (see equation 1.1.1), because the considered family Ĉx(F) is also a function of x, i.e., it is
sample-dependent. We now derive its important properties: bias and concentration.

Bias The expectation w.r.t. x of R̂m(Ĉx(F),x) is not the RA of the distributional centralization of
F (i.e., Rm(CD(F),D)), but we now show that the bias decreases rapidly in m, i.e., Rm(CD(F),D) ∈
Θ(Ex[R̂m(Ĉx(F),x)]). For ease of notation, let

b(m)
.
= E

σ

∣∣∣∣∣∣ 1m
m∑
i=1

σi

∣∣∣∣∣∣
 (which is Θ

(
1√
m

))
. (1.2.1)

Lemma 1.2.1. Suppose m ≥ 4. Then

Ex

[
R̂m(Ĉx(F),x)

]
1 + 2b(m)

≤ Rm(CD(F),D) ≤
Ex

[
R̂m(Ĉx(F),x)

]
1− 2b(m)

.
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Concentration We now show that R̂m(Ĉx(F),x) is tightly concentrated around its expectation
because it is a self-bounding function [Boucheron et al., 2000, 2009] (see also definition A.1.1 in the
supplementary material). We call the widest range of F the quantity

r
.
= sup

f∈F

(
max
x∈X

f(x)−min
y∈X

f(y)
)

(≤ b− a) . (1.2.2)

It is possible that r � b− a, for example, when F contains a function f and a function g = f + c for
some c ∈ R. The widest range of the empirical and distributional centralizations of F is the same as the
widest range of F .

Theorem 1.2.2. Suppose m ≥ 1, and let χ
.
= 1 + 2b(m). For any δ ∈ (0, 1), with probability at least

1− δ over the choice of x, it holds that

E
x
[R̂m(Ĉx(F),x)]≤ R̂m(Ĉx(F),x)+

2rχln1
δ

3m
+

√√√√(rχln1
δ√

3m

)2
+
2rχ(R̂m(Ĉx(F),x)+rb(m)) ln1

δ

m
. (1.2.3)

The ERA of F is a self-bounding function [Boucheron et al., 2003, Sect. 5.1], but proving this fact for
the ERA of the empirical centralization Ĉx(F) of F is more challenging (see proof in the supplementary
material), because the empirical centralization Ĉx(F) itself depends on the sample x. This result,
together with lemma 1.2.1, enables us to use the ERA of the empirical centralization, and Monte-Carlo
estimations of it, to derive practical sharp upper-bounds to the SD.

1.3 Uniform convergence bounds
We now introduce novel bounds to the SD using the ERA of the empirical centralization. Before doing
so, we must introduce an important technical concept.

Wimpy variance The raw (i.e., non-centralized) wimpy variance Wr(F) of F and the (centralized)
wimpy variance W(F) of F are key quantities in the study of probabilistic tail bounds to the SD [Boucheron
et al., 2013, Ch. 11]. They are defined as

Wr(F) .
= sup

f∈F
E

x∼D

[(
f(x)

)2]
, and W(F) .

= sup
f∈F

E
x∼D

[(
f(x)− E

D
[f ]

)2
]

. (1.3.1)

Naturally, the raw wimpy variance is always greater or equal to its centralized counterpart, and potentially
much larger. A key identity that we use throughout this work is

W(F) = Wr(CD(F)) = W(CD(F)) .

Empirical estimators on x for the raw wimpy variance and for the wimpy variance are

Ŵr
x(F)

.
= sup

f∈F

1

m

m∑
i=1

(
f(xi)

)2
, and Ŵx(F)

.
= sup

f∈F

1

m

m∑
i=1

(
f(xi)− Ê

x
[f ]

)2

.

To compute the sample-dependent bounds to the SD that we introduce later in this section, we develop
novel tail bounds to these estimators, which we believe to be of independent interest. Most prior work
assumed known a-priori bounds to the wimpy variances, but we show that they can be replaced by
empirical bounds. Maurer and Pontil [2009] prove that the sample variance (i.e., when F is a singleton)
is a weakly self-bounding function [McDiarmid and Reed, 2006]. Our result holds for general F , and is
stronger, as we show that the wimpy variance is a (strongly) self-bounding function [Boucheron et al.,
2000, 2009] (see also definition A.1.1 in the supplementary material).
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Theorem 1.3.1. Suppose m ≥ 2. Let δ ∈ (0, 1). With probability ≥ 1− δ over the choice of x,

W(F) ≤ m
m−1Ŵx(F) +

r2 ln 1
δ

m− 1
+

√√√√(r2 ln 1
δ

m− 1

)2

+
2r2 m

m−1
Ŵx(F) ln 1

δ

m− 1
. (1.3.2)

Bounds to the SD Bousquet [2002, Thm. 2.3 (presented here for clarity in a slightly weaker form)]
uses the wimpy variance to derive concentration bounds for the SD.

Theorem 1.3.2 (Bousquet, 2002, Thm. 2.3). Let δ ∈ (0, 1). With probability ≥ 1− δ over the choice
of x,

SD(F ,x) ≤ E
x

[
SD(F ,x)

]
+

2r ln 1
δ

3m
+

√√√√2
(
W(F) + 4r Ex

[
SD(F ,x)

])
ln 1

δ

m
. (1.3.3)

By plugging the r.h.s. of the symmetrization inequalities equation 1.1.2 and equation 1.1.4 in the r.h.s.
of equation 1.3.3, one can obtain bounds that depend on the RA of F or on the RA of the distributional
centralization CD(F). Neither of these bounds are sample-dependent. Such a bound can be obtained, for
example, by using the ERA of F and a tail bound (e.g., McDiarmid [1989]’s inequality or a tail bound
for self-bounding functions [Boucheron et al., 2009]) on the deviation of the ERA from the RA. The
following result states our sample-dependent bound to the SD using the empirical centralization Ĉx(F)
and tail bounds to the wimpy variance, obtained by combining lemma 1.2.1 and theorems 1.3.1 to 1.3.2.

Theorem 1.3.3. Assume m ≥ 4, and let η ∈ (0, 1). Take ν to be the r.h.s. of equation 1.3.2 computed
with δ = η/3, so P(W(F) > ν) ≤ η/3, and take λ to be the r.h.s. of equation 1.2.3 computed with δ = η/3,
so P(Ex[R̂m(Ĉx(F),x)] > λ) ≤ η/3. With probability ≥ 1− η over the choice of x, it holds that

SD(F ,x) ≤ 2λ

1− 2b(m)
+

2r ln 3
η

3m
+

√
2(ν + 8rλ/(1−2b(m))) ln 3

η

m
.

The r.h.s. is

2

1− 2b(m)
R̂m

(
Ĉx(F),x

)
+O

r ln 1
η

m
+

√
(W(F) + rRm(CD(F),D) + r2/

√
m) ln 1

η

m

 .

Is there any advantage in using this bound, i.e., in using empirical centralization, rather than using a
bound involving the ERA of F? I.e., how does it compare to the standard bound

SD(F ,x) ≤ 2R̂m (F ,x) +O

q ln 1
η

m
+

√
(W(F) + qRm(F ,D) + q

√
Wr(F)/

√
m) ln 1

η

m

 ?

We shall see that the r2/
√
m and q

√
Wr(F)/

√
m terms are incomparable, though both appear only in transient

O(m−3/4) terms, and the remaining differences all favor centralization. Most previous studies focused on
the behavior of SD bounds as functions of the sample size m, but we believe that efficient SD bounds for
practical applications (e.g., [Riondato and Upfal, 2018, 2015, Pellegrina et al., 2019, Areyan Viqueira
et al., 2019, Pellegrina et al., 2020]), must improve the dependence also on the other parameters, the
wimpy variance being the most important. Indeed, developing such bounds is the goal of this work.

First of all, we remark that the dependence on the wimpy variance shown in equation 1.3.3 cannot be
improved: any bound to the SD of F must be Ω

√
W(F) ln 1

δ
/m, as can be shown using minimax lower

bounds and median-of-means bounds [Devroye et al., 2016, Lugosi and Mendelson, 2019]. The question
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is thus whether the complexity terms, i.e., R̂m(F ,x) and R̂m(Ĉx(F),x) can match this lower bound.
Lemma 1.3.4 answers this question in the negative for R̂m(F), and in the positive for R̂m(Ĉx(F),x):
the ERA of F is controlled (in part) by the empirical raw wimpy variance, whereas the ERA of Ĉx(F)
has corresponding depence on the empirical (centralized) wimpy variance. As with ordinary function
variances, the raw wimpy variance can be unboundedly larger than the (centralized) wimpy variance,
e.g., in the constant function family F .

= {x 7→ c}.

Lemma 1.3.4. For any x ∈ Xm, it holds

R̂m(F ,x) ≥
√

Ŵr
x(F)
2m

and R̂m(Ĉx(F),x) ≥
√

Ŵx(F)
2m

.

Furthermore, it holds

lim
m→∞

√
mRm(F ,D) ≥

√
2
πW

r(F) and lim
m→∞

√
mRm(CD(F),D) ≥

√
2
πW(F) .

To make the result concrete, consider that as soon as F contains a function f and a “c-shifted”
version of it f + c, for some c ∈ R+, then supg∈F |Êx[g]| ≥ c/2, thus Ŵr

x(F) ≥ c2/4, and from the above
lemma, R̂m(F ,x) ≥ c/

√
8m, but R̂m(Ĉx(F),x) does not suffer from this issue.

The significance of lemma 1.3.4 is that a dependence on the (centralized) wimpy variance cannot be
obtained without empirical centralization. One must settle for dependence on the raw wimpy variance,
which can be unboundendly larger than its centralized counterpart. The result also tells us that a
dependence on the (centralized) wimpy variance may be attained with empirical centralization. We show
next that such is indeed the case.

Optimal dependence on wimpy variance The quantity R̂m(Ĉx(F),x) is an ERA, thus it can
be upper-bounded using Massart’s finite-class lemma [Massart, 2000, lemma 5.2]. We now apply this
celebrated result to bound the ERA under empirical centralization while including the absolute value
(absent from some presentations) inside the supremum of the ERA.

Corollary 1.3.5. Assume that F is finite. Let F±
.
= F ∪ {−f, f ∈ F}. It holds

R̂m(Ĉx(F),x) ≤

√
2Ŵx(F) ln|Ĉx(F±)|

m
. (1.3.4)

The use of F± is needed to handle the absolute value in our definition of the ERA (see equation 1.1.1).
Without empirical centralization, the dependence would be on the raw wimpy variance, which equals the
squared `2 norm in “classic” presentations of Massart’s lemma. Corollary 1.3.5 shows that empirical
centralization enables optimal dependence on the centralized wimpy variance, which cannot be obtained
without empirical centralization, as shown in lemma 1.3.4.

Monte-Carlo estimation The quantity R̂m(Ĉx(F),x) is an ERA, so it “suffers” from the usual issue
of how to actually compute or bound it in order to bound the SD via theorem 1.3.3. While analytical
methods (e.g., Massart’s lemma) yield (generally loose) bounds, Monte-Carlo estimation with proper tail
bounds gives better results in practice, and it was proposed almost concurrently with the introduction of
the ERA [Bartlett and Mendelson, 2002].

Definition 1.3.6. Let σ ∈ (±1)n×m be a matrix of i.i.d. Rademacher r.v.’s. The Monte-Carlo ERA
R̂

n
m(F ,x,σ) of F on x w.r.t. σ is the quantity

R̂
n
m(F ,x,σ) .

=
1

n

n∑
i=1

sup
f∈F

∣∣∣∣∣∣ 1m
m∑
j=1

σi,jf(xi)

∣∣∣∣∣∣ .
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It clearly holds Eσ[R̂
n
m(F ,x,σ)] = R̂m(F ,x). Bartlett and Mendelson [2002, Thm. 11] show that

the MC-ERA with n = 1 is concentrated about the ERA as

P
σ

(∣∣∣R̂m(F ,x)− R̂1
m(F ,x,σ)

∣∣∣ ≥ ε
)
≤ 2 exp

(
−2mε2

q2

)
.

The r.h.s. can be used in theorem 1.3.3 inside the definition of λ (with the needed adjustment of the
confidence parameter δ using a union bound), thus obtaining an upper bound to the SD using the
MC-ERA. The leitmotif of this work is to obtain strong, practical, sample-dependent bounds to the
SD, so we derive a novel tail bound to the MC-ERA (theorem 1.3.7) for general n, where the strong
dependence on q2 of the above bound is replaced by a much weaker dependence, primarily on W(F). This
change is similar to how theorem 1.3.2 improves over textbook bounds to the SD that use McDiarmid’s
bounded difference inequality. Our improved variance-sensitive bound uses a transportation-method
inequality due to Samson [2007] to upper bound the expectation of suprema of empirical processes. This
result is, to our knowledge, novel, and is worst-case asymptotically equivalent to the McDiarmid bounds,
and improves over it when the wimpy variance is small. The bound uses the empirical maximum q̂F (x)
of F on x, defined as

q̂F (x)
.
= sup

f∈F ,x∈x
|f(x)| (≤ q) .

Theorem 1.3.7. Let σ ∈ (±1)n×m be a matrix of i.i.d. Rademacher r.v.’s. Let δ ∈ (0, 1). With
probability at least 1− δ over the choice of σ, it holds

R̂m(F ,x) ≤ R̂n
m(F ,x,σ) +

2q̂F (x) ln
1
δ

3nm
+

√
4Ŵr

x(F) ln 1
δ

nm
. (1.3.5)

Empirical centralization obtains a dependence on the empirical wimpy variance of F , rather than on
the raw (i.e., non-centralized) one. This advantage propagates when using the MC-ERA of the empirical
centralization to bound the SD of F . The dependence on the empirical maximum changes from q̂F (x) to
q̂Ĉx(F)(x), which can be a large improvement (and q̂Ĉx(F)(x) < 2q̂F (x) at most).

Corollary 1.3.8. Let σ ∈ (±1)n×m be a matrix of i.i.d. Rademacher r.v.’s. Let δ ∈ (0, 1). With
probability at least 1− δ over the choice of σ, it holds

R̂m(Ĉx(F),x) ≤ R̂
n
m(Ĉx(F),x,σ) +

2q̂Ĉx(F)(x) ln
1
δ

3nm
+

√
4Ŵx(F) ln 1

δ

nm
.

Although n = 1 Monte-Carlo trials are sufficient to match the convergence rate of theorem 1.3.2,
the Monte-Carlo estimation error term can still be a significant portion of the total SD bound. For
practical usage, particularly with small sample sizes, or when extremely tight bounds are needed, more
Monte-Carlo trials (i.e., larger n) rapidly reduce the Monte-Carlo estimation error, and this error is soon
dominated by the tail bound terms of theorem 1.3.2.

Example: batch panel of experts Consider now the batch panel of experts problem, where F is a
finite family of experts, and the task is to select the (approximately) most accurate among them, given a
sample of labeled instances. With the Monte-Carlo method, we may sharply bound the SD whenever
evaluating the requisite suprema is computationally feasible, i.e., via enumeration of F . Furthermore, we
automatically benefit from data-dependent and distribution-dependent structure, e.g., highly correlated
or anticorrelated experts, and low wimpy variance over uniformly accurate F . This example immediately
extends to model selection via structural risk minimization if, e.g., the experts are organized into
concentric groups by some a priori confidence or quality estimate.

8



F1 over R4 F1 over R256 F2 over R64

Sample size m Sample size m Sample size m

Figure 1.1: Comparison of SD bounds as functions of the sample size m. See the main text for an
explanation of the results.

F1 over R4 F1 over R256 F2 over R64

Sample size m Sample size m Sample size m

Figure 1.2: Upper bounds to complexity measures and SD as functions of the sample size m. See the
main text for details.

1.4 Experimental evaluation
We performed experiments to evaluate the various bounds presented in the previous sections and compare
the bounds to the SD using empirical centralization to those without centralization. The code is included
in the supplementary material.

Function families We consider the function families Fp, for any p ≥ 1, containing all unit `p-norm-
constrained linear functions in Rd, i.e.,

Fp
.
= {x 7→ w · x, w ∈ Rd s.t. ‖w‖p ≤ 1} .

These families are of immediate interest in many machine learning settings, such as the analysis of support
vector machines and neural networks, as both consist of Lipschitz loss and/or activation functions applied
to one or more linear functions (see, e.g., [Bartlett and Mendelson, 2002] for analysis). Additionally,
a bound on the SD of Fp over distribution D over Rd corresponds to the radius of the `p/p−1 (Hölder
dual norm) ball about Ê[x] in which ED[x] ∈ Rd falls. Such balls can be used to estimate covariance
matrices, high-dimensional sufficient statistics in graphical models [Bradley and Guestrin, 2012], and to
learn equilibria in simulation-based games [Areyan Viqueira et al., 2019, 2020].

Analytical bounds to the ERA of Fp on x and Monte-Carlo estimates of it (see definition 1.3.6) are
relatively straightforward [Shalev-Shwartz and Ben-David, 2014, Lemmas 26.10, 26.11] (see lemma A.2.1
in the supplementary material). The following lemma extends these results to the empirical centralization.
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Lemma 1.4.1. Let x̄ .
= 1

m

∑m
i=1 xi ∈ Rd. For the `1 norm, it holds

R̂m(Ĉx(F1),x) = E
σ


∥∥∥∥∥∥ 1

m

m∑
i=1

σi(xi − x̄)

∥∥∥∥∥∥
∞

 ≤ max
i
‖xi − x̄‖∞

√
2 ln(2d)

m
,

while for the `2 norm, it holds

R̂m(Ĉx(F2),x) = E
σ


∥∥∥∥∥∥ 1

m

m∑
i=1

σi(xi − x̄)

∥∥∥∥∥∥
2

 ≤ max
i
‖xi − x̄‖2

1√
m

.

Similar bounds are possible for other values of p; e.g., by linearity, the case of p =∞ is trivial. Note
that in addition to computing MC-ERAs from `p/p−1 dual norms, we may also compute (raw) empirical
wimpy variances from operator norms of (raw) covariance matrices of x. In particular, for F1, it is easy
to show that the wimpy variance is simply the largest variance along any standard basis vector. Similarly,
for F2, the wimpy variance is simply the maximum variance along any unit vector, i.e., the spectral norm
of the covariance matrix.

Data generation and parameter values We generated the samples x for our experiments from
random distributions over Rd. The ERA of the family F1 is susceptible to the value of d (see lemma 1.4.1
and lemma A.2.1 in the supplementary material), so we use d = 4 and d = 256, while in the case of F2

the ERA is independent of d, so we use d = 64. Details of the distributions are in the supplementary
material. Range-like quantities (e.g., q, q̂, r) can be computed from the data and/or known a-priori
bounds: r = 1 for our F1 experiments and r = 8 for the F2 case. (Raw) wimpy variances correspond
to norms of the (raw) covariance matrices used for data generation (see the supplementary material
for details). In all experiments, we used δ = 0.01 and n = 32 (we comment on this choice below). The
sample size m varied from 4 (the minimum possible, due to lemma 1.2.1) to 107.

A note on results visualization We present all of our results in plots with log-log axes, so that
convergence rates are clearly visible as slopes, and constant factors as vertical offsets. The x-axis is the
sample size m. Since we expect asymptotic convergence rates ∝ C/

√
m, where C depends on the (possibly

raw) wimpy variance of F , r, and δ, we plot all quantities multiplied by
√
m. This transformation allows

to clearly visualize Θ(C/
√
m) behaviors as straight horizontal lines, and o(C/

√
m) behaviors as (transient)

downward slopes. For completeness, we show plots without the scaling by
√
m in the supplementary

material.

Results Figure 1.1 compares four bounds to the SD: using the Monte-Carlo estimate R̂n
m(Ĉx(Fp),x,σ)

for the ERA R̂m(Ĉx(Fp),x) of the empirical centralization of Fp on x, using the Monte-Carlo estimate
R̂

n
m(Fp,x,σ) for the ERA R̂m(Fp,x) of the non-centralized Fp, using analytical bounds to R̂m(Ĉx(Fp),x)

from lemma 1.4.1, and using analytical bounds to R̂m(Fp,x) from lemma A.2.1 (in the supplementary
material). The thicker grey line is the quantity

√
mr; bounds above this line are vacuous.

At very small sample sizes (when all bounds are vacuous), the bounds obtained without centralization
are sharper than the bounds with empirical centralization, due to the bias-correction of lemma 1.2.1
(see ξ in theorem 1.3.3) and the (fast-decaying) Θ(r/m3/4) term of theorem 1.2.2. Before m ≈ 200, when
bounds become non-vacuous, the advantages of empirical centralization become clear, and increase with
the sample size. Recall that each bound is scaled by

√
m, thus all are asymptotically horizontal, as

Θ(C/
√
m) terms eventually dominate the bound to the SD, where C varies greatly between bounds and

methods. Thus without empirical centralization, obtaining the same bound to the SD would require
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a larger sample size m than with empirical centralization (this effect can be better observed in the
non-
√
m-scaled plots in figure A.1 in the supplementary material.) The Monte-Carlo estimate, despite

using only n = 32 Monte-Carlo trials, gives better bounds to the SD than an analytical approach.
In figure 1.2, we drill down on the SD bounds using the Monte-Carlo estimate R̂n

m(Ĉx(Fp),x,σ)
for the ERA R̂m(Ĉx(Fp),x) of the empirical centralization of Fp on x, showing this quantity, together
with the upper bounds to other intermediate quantities, that eventually lead to the SD bound: the ERA
R̂m(Ĉx(Fp),x) (obtained by applying theorem 1.3.7 to the MC-ERA), the RA Rm(Fp,D) (obtained by
applying theorem 1.2.2 and lemma 1.2.1 to the bound on the ERA), and SD (obtained by applying the
r.h.s. of equation 1.1.4 and theorem 1.3.2 to the bound on the RA).

At small sample sizes, the fast-decaying terms dominate the bounds to the RA and SD, but, true to
their nature, quickly become negligible: all bounds are asymptotically Θ(C/

√
m), where C, which in the

plots in figure 1.2 appear as the vertical offset of each curve at high sample sizes, depends mostly on
the wimpy variance of F and the range r. The bounds that decay as Θ

√
W(F)/m (i.e., the MC-ERA

→ ERA and RA → SD bounds) introduce constant factor terms, manifest as asymptotic vertical gaps,
whereas the remaining bounds entirely vanish asymptotically. The gap from the MC-ERA to the ERA
would disappear as the number n of Monte-Carlo trials (which we fixed at n = 32) increases.

The range and wimpy variances are approximately the same in both F1 experiments but the MC-ERA
are much larger when d = 256 because here the RA is essentially the expected largest distance traveled
over d random walks, which increases with d (see also lemma 1.4.1).

In conclusion, the results confirm the advantages of empirical centralization to obtain tighter bounds
to the SD with optimal dependence on the wimpy variance, while still maintaining the same behavior in
terms of the number of samples as bounds not using centralization.

1.5 Conclusions
We develop practical, sharp, sample-dependent probabilistic bounds to the SD through empirical
centralization, together with novel results on the concentration of the wimpy variance and of Monte-Carlo
estimates of the ERA. Our bounds exhibit optimal dependence on the wimpy variance and the same
dependence on the number of samples as bounds not using centralization. The results of our experimental
evaluation show that the advantage is significant even at small sample sizes, and remains so as the
sample size grows. In future work, we will explore the important relationship between centralization and
localization [Koltchinskii, 2006, Giné and Koltchinskii, 2006].
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Chapter 2

Fairness with Population Means: Malfare and
Welfare
2.1 Quantifying Population-Level Sentiment

A generic population mean function M(S;w) quantifies some sentiment value S, across a population
Ω weighted by w. In particular, S : Ω → R0+ describes the values over which we take the mean,
and w, a probability measure over Ω, describes their weights. When S measures a desirable quantity,
generally termed utility, the population mean is a measure of cardinal welfare Moulin [2004], and thus
quantifies overall well-being. We also consider the inverse-notion of ill-being, termed malfare, in terms of
an undesirable S, generally loss or risk, which naturally extends the concept. We show an equivalent
axiomatic justification for malfare, and argue that its use is more natural in many situations, particularly
when considering or optimizing loss functions.

Definition 2.1.1 (Population Means: Welfare and Malfare). A population mean function M(S;w)
measures the overall sentiment of population Ω, measured by sentiment function S : Ω→ R0+, weighted
by probability measure w over Ω. If S denotes a desirable quantity (i.e., utility), we call M(S;w) a
welfare function, written W(S;w), and inversely, if it is undesirable (i.e., loss or risk), we call it a
malfare function, written W(S;w).

For now, think of the term population mean as signifying that an entire population, with diverse
and subjective desiderata, is considered and summarized, rather than a single objective viewpoint. As
we introduce axioms and show consequent properties, the appropriateness of the term shall become
more apparent. Note that we use the term sentiment to refer to S with neutral connotation, but when
discussing welfare or malfare, we often refer to S as utility or risk, respectively, as in these cases, S
describes a well-understood pre-existing concept. Coarsely speaking, the three notions are identical (all
being functions of the form (Ω→ R0+)×Measure(Ω, 1)→ R0+), however we shall see that in order
to promote fairness, the desirable axioms of malfare and welfare functions differ slightly. The notation
reflects this; M(S;w) is an M for mean, whereas W(S;w) is a W for welfare, and W

(S;w) is an W

(inverted W), to emphasize its inverted nature.
Often we are interested in unweighted population means, given sentiments as a vector S ∈ Rn

0+.
Unweighted means may be defined in terms of weighted, as

M(S) .
= M

(
i 7→ Si; {i 7→ 1

n}
)

,

abusing notation to concisely express the uniform measure. Indeed, it may seem antithetical to fairness
to allow for weights in Malfare and Welfare definitions. Consider however that weights are needed to
represent cases where populations differ in size, and ensure that the welfare or malfare of weight-preserving
decompositions of groups into subgroups with equal risk or utility remains constant.

Example 2.1.2 (Utilitarian Welfare). Suppose a 3-group population Ω
.
= {ω1, ω2, ω3} consisting of three

groups, encompassing 30%, 30%, and 40% of the total population, respectively. We now take weights
measure w s.t. w(ωi) = (0.3, 0.3, 0.4)i, representing the relative sizes of each group in the population.

Now suppose individuals reside in some space X , where distributions D1:3 over domain X describe
the individuals in each group. Suppose also utility function U(x) : X → R0+, describing the level of
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satisfaction of an individual e.g., w.r.t. some particular situation, allocation, or classifier. We now take
sentiment function to be the mean utility (per-group), i.e.,

S(ωi)
.
= E

x∼Di

[U(x)] = E
Di

[U] .

We then define the utilitarian welfare as

W1(S;w)
.
=

3∑
i=1

w(ωi)S(ωi) = E
ω∼w

[S(ω)] = E
w
[S] .

Of course, in statistical, sampling, and machine learning contexts, D1:n and w may be unknown, so
we now discuss an empirical analogue. Section 2.3 is then devoted to showing how and when empirical
population means well-approximate their true counterparts.

Example 2.1.3 (Empirical Utilitarian Welfare). Now suppose D1:n are unknown, but instead, we are
given a sample x1:n,1:m ∈ X n×m, where xi,1:m ∼ D1:m. We define an empirical analogue of the utilitarian
welfare as in example 2.1.2, instead taking

Ŝ(ωi)
.
= Ê

x∈xi

[U(x)] , Ŵ1(Ŝ,w)
.
= E

w
[Ŝ] .

Similarly, if w is unknown, but we may sample from some D over Ω × X , we can use empirical
frequencies ŵ in place of true frequencies w, and define Ŝ(ωi) as conditional averages over the subsample
associated with group i.

2.1.1 Axioms of Cardinal Welfare (or Malfare)

Definition 2.1.4 (Axioms of Cardinal Welfare (and Malfare)). We define the population-mean axioms
for population-mean function M(S;w) below. For each item, assume (if necessary) that the axiom applies
∀S,S ′ ∈ Ω→ R0+, ∀ permutations π over Ω, and probability measure w over Ω.

1. Monotonicity: ∀ε : Ω→ R0+ : M(S;w) ≤ M(S + ε;w).
2. Symmetry: M(S;w) = M(π(S);π(w)).
3. Continuity: ∀S : {S ′ | M(S ′;w) ≤ M(S;w)} is a closed set.
4. Independence of unconcerned agents: Suppose α, β ∈ R0+, and take subpopulation Ω′ ⊆ Ω. Then

M

{p ∈ Ω′ α

p 6∈ Ω′ S(p)
;w

 ≤ M

{p ∈ Ω′ α

p 6∈ Ω′ S ′(p)
;w

 =⇒ M

{p ∈ Ω′ β

p 6∈ Ω′ S(p)
;w

 ≤ M

{p ∈ Ω′ β

p 6∈ Ω′ S ′(p)
;w

 .

5. Independence of common scale: Suppose scalar α ≥ 0. Then M(S,w) ≤ M(S ′,w) =⇒ M(αS,w) ≤
M(αS ′,w)

6. Multiplicative Linearity: Suppose α ≥ 0. Then M(αS;w) = αM(S;w).
7. Unit Scale: M(1;w) = M(1, . . . , 1;w) = 1.
8. Pigou-Dalton transfer principle: Suppose S,S ′ s.t. µ = Ew[S] = Ew[S ′], and ∀p ∈ Ω :

∣∣µ− S ′(p)∣∣ ≤∣∣µ− S(p)∣∣. Then W(S ′;w) ≥W(S;w).
9. Anti-Pigou-Dalton transfer principle: Suppose the hypothesis of 8, but instead require the conclusion

W

(S ′;w) ≤ W

(S;w).

We take a moment to comment on each of these axioms, to preview their purpose and assure the
reader of their necessity. Axioms 1-5 are the standard axioms of cardinal welfarism (1-4 are discussed
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by Sen [1977], Roberts [1980], and 5 by Debreu [1959], Gorman [1968]). Together, they imply that any
population-mean can be decomposed as a monotonic function of a sum (over groups) of log or power
functions. Axiom 6 is a natural and useful property, and ensures that dimensional analysis on mean
functions is possible: in particular, the units of mean functions match those of sentiment. Note that
axiom 6 implies axiom 4, and it is thus a simple strengthening of a traditional cardinal welfare axiom.
This axiom also ensures that units of population means preserve the units of S, making dimensional
analysis greatly more convenient; we will also see that it is essential to show convenient statistical and
learnability properties. Axiom 7 furthers this theme, as it ensures that not only do units of means
match those of S, but scale does as well (making comparisons like Si is above the population-welfare
meaningful), and also enabling comparison across populations (in the sense that comparing averages is
more meaningful than sums). Finally, axiom 8 (the Pigou-Dalton transfer principle [see Pigou, 1912,
Dalton, 1920]) is also standard in cardinal welfare theory as it ensures fairness, in the sense that welfare
is higher when utility values are more uniform, i.e., incentivizing equitable redistribution of “wealth”
in welfare. Its antithesis, axiom 9, encourages the opposite; in the context of welfare, this perversely
incentivizes an expansion of inequality, but for Malfare, which we generally wish to minimize, the opposite
occurs, thus this axiom characterizes fairness in the context of Malfare.

For context, we present an additional axiom; that of additive separability. For simplicity, we present
it only in the unweighted discrete case, as there is some subtlety to an equivalent measure-theoretic
formulation, and we derive no benefit from assuming this axiom, as it is largely incompatible with our
assumptions, and presented only for comparison purposes.

Definition 2.1.5 (Additive Separability). Population-mean M(S1:n) is additively separable if there exist
functions f1:n s.t. each fi ∈ R0+ → R0+, and M(S1:n) may be decomposed as

M(S1,S2, . . . ,Sn) =
n∑

i=1

fi(Si) .

While seemingly quite important to early welfare theorists (i.e., the Debreu-Gorman theorem is
generally presented in additively-separable form), and it gives rise to some convenient interpretability
and computational properties, we argue that these are far-outstripped by those stemming from the
multiplicative linearity and unit scale axioms, with no real difference in generality. Furthermore, unlike
these and other standard cardinal welfare axioms, additive separability seems a bit-heavy handed,
assuming something very specific that is supposedly convenient for the economist, with little justification
as to why and how it serves as a fundamental property of cardinal welfare itself. These properties are
discussed in section 2.1.3, and directly compared with the additively-separable form in section 2.1.4.

2.1.2 The Power Mean

We now define the p-power mean Mp(. . . ), for any p ∈ R ∪ ±∞, which we shall use to quantify both
malfare and welfare. Power means arise often when analyzing population means obeying the various
axioms of definition 2.1.4, and as we shall see in theorem 2.1.7, are a particularly important class of
population means.

Definition 2.1.6 (Power-Mean Welfare and Malfare). Suppose p ∈ R ∪ ±∞. We first define the
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unweighted power mean of sentiment vector S ∈ Rn
0+ as

Mp(S)
.
=



p ∈ R \ {0} p

√√√√ 1

n

n∑
i=1

Spi

p = −∞ min
i∈1,...,n

Si

p = 0 n

√√√√ n∏
i=1

Si = exp

 1

n

n∑
i=1

ln(Si)


p =∞ max

i∈1,...,n
Si

.

We now define the weighted power mean, given sentiment value function S : Ω→ R0+ and probability
measure w over Ω, as

Mp(S;w)
.
=



p ∈ R \ {0} p

√∫
w
Sp(ω) d(ω) = p

√
E

ω∼w
[Sp(ω)]

p = −∞ min
ω∈Support(w)

S(ω)

p = 0 exp

(∫
w
lnS(ω) d(ω)

)
= exp

(
E

ω∼w
[lnS(ω)]

)
p =∞ max

ω∈Support(w)
S(ω)

.

In both the weighted and unweighted cases, p ∈ {−∞, 0,∞} resolve as their (unique) limits, and for
all p ∈ R, note that power means are special cases of the (weighted) generalized mean, defined for strictly
monotonic f as Mf (S;w)

.
= f−1(Eω∼w[lnS(ω)]).

Theorem 2.1.7 (Properties of the Power-Mean). Suppose S, ε are loss values Ω → R0+, and w is a
probability measures over some space Ω.Then

1. Monotonicity: Mp(S;w) is weakly-monotonically-increasing in p, and strictly if S attains distinct
a, b ∈ R with nonnegligible probability.
2. Subadditivity: ∀p ≥ 1 : Mp(S + ε;w) ≤ Mp(S;w) +Mp(ε;w).
3. Contraction: ∀p ≥ 1 :

∣∣Mp(S;w)−Mp(S ′;w)
∣∣ ≤ Mp(

∣∣S − S ′∣∣ ;w) ≤
∥∥S − S ′∥∥∞.

4. Curvature: Mp(S) is convex for p ∈ [1,∞] and concave for p ∈ [−∞, 1].

Proof. We omit proof of item 1, as this is a standard property of power-means (generally termed the
power mean inequality [Bullen, 2013, Ch. 3]).

We first show item 2. By the triangle inequality (for p ≥ 1), we have

Mp(S + ε;w) ≤ Mp(S;w) +Mp(ε;w) .

We now show item 3 First take ε
.
= S − S ′. Now consider

Mp(S;w) = Mp(S ′ + ε;w) Definition of ε

≤ Mp(S ′ + ε+;w) Monotonicity
≤ Mp(S ′;w) +Mp(ε+;w) item 2
≤ Mp(S ′;w) +Mp(

∣∣S − S ′∣∣ ;w) . Monotonicity
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By symmetry, we have Mp(S ′,w) ≤ Mp(S,w) +Mp(
∣∣S − S ′∣∣ ;w), which implies the result.

We now show item 4. First note the special cases of p ∈ ±∞ follow by convexity of the maximum
(p =∞) and concavity of the minimum (p = −∞).

Now, note that for p ≥ 1, by concavity of p
√
·, Jensen’s inequality gives us

M1(S;w) = E
ω∼w

[S(ω)] = E
ω∼w

[ p
√
Sp(ω)] ≤ p

√
E

ω∼w
[Sp(ω)]︸ ︷︷ ︸

Definition of Convexity

= Mp(S;w) ,

i.e., convexity, and similarly, for p ≤ 1, p 6= 0, we have by convexity of p
√
·, we have

M1(S;w) = E
ω∼w

[S(ω)] = E
ω∼w

[ p
√
Sp(ω)] ≥ p

√
E

ω∼w
[Sp(ω)]︸ ︷︷ ︸

Definition of Concavity

= Mp(S;w) .

Similar reasoning, now by convexity of ln(·), shows the case of p = 0, which completes the proof.

2.1.3 Properties of Welfare and Malfare Functions

We now show that definition 2.1.4 are sufficient to characterize many properties of Welfare and Malfare.

Theorem 2.1.8 (Population Mean Properties (Weighted)). Suppose population-mean function M(S;w).
If M(·; ·) satisfies (subsets of) the population-mean axioms (see definition 2.1.4), we have that M(·; ·)
exhibits the following properties. For each, assume arbitrary sentiment-value function S : Ω → R0+,
weights measure w.

1. Identity: Axioms 6 & 7 imply M(ω 7→ α,w) = α.
2. Axioms 1-5 imply ∃p ∈ R, monotonically increasing F : R→ R0+ s.t.

M(S) = F

(∫
w
fp(S(ω)) d(ω)

)
= F

(
E

ω∼w

[
fp(S(ω))

])
, with


p > 0 fp(x)

.
= xp

p = 0 f0(x)
.
= ln(x)

p < 0 fp(x)
.
= −xp

.

3. Axioms 1-7 imply ∃p ∈ R s.t. M(S;w) = Mp(S;w) (i.e., M(·; ·) is a weighted power-mean with finite
p).
4. Axioms 1-5 and 8 imply p ∈ [1,∞).
5. Axioms 1-5 and 9 imply p ∈ (−∞, 1].

Proof. Item 1 is an immediate consequence of axioms 6 & 7 (multiplicative linearity and unit scale).
We now note that item 2 is the celebrated Debreu-Gorman theorem [Debreu, 1959, Gorman, 1968],

extended by continuity and measurability of S to the weighted case.
We now show item 3. This result is essentially a corollary of item 2, hence the dependence on axioms

1-4. Suppose S(·) = 1. By item 6 and item 7, for all p 6= 0, we have:

α = αM(S;w) = M(αS;w) = F ( E
ω∼w

[fp(αS(ω))]) = F ( E
ω∼w

[fp(α)]) =

p > 0 F ( E
ω∼w

[(αS(ω))p]) = F (αp)

p < 0 F ( E
ω∼w

[−(αS(ω))p]) = F (−αp)
.

From here, it is clear that for p > 0, α = F (αp), thus F−1(u) = up and consequently F (v) = p
√
v, and

similarly, for p < 0, α = F (−αp), thus F−1(u) = −up, and consequently F (v) = p
√
−v.

Taking p = 0 gets us

α = αM(S;w) = F ( E
ω∼w

[ln(αS(ω))]) = F (ln a) ,

16



from which it is clear that F−1(u) = ln(u) =⇒ F (v) = exp(v).
In all cases of p, substituting the values of fp and F (·) into 2 yields M(S;w) = Mp(S;w).
We now show 4 and 5. These properties follow directly from 2, wherein fp are defined, and Jensen’s

inequality.

Taken together, the items of theorem 2.1.8 tell us that the mild conditions of axioms 1-4 (generally
assumed for welfare), along with multiplicative linearity, imply that welfare and utility, or malfare and
loss, are measured in the same units (i.e., nats or binits for cross-entropy loss, square-Y-units for square
error, or dollars for income utility), and power-mean Malfare is effectively the only reasonable choice of
Malfare function (even without multiplicative linearity, axioms 1-5 imply a population mean functions is
still a monotonic transformation of a power-mean). Furthermore, the entirely milquetoast unit scale
axiom 7 implies that sentiment values and population means have the same scale (making comparisons
like “the loss of group i is above / below the population malfare” meaningful. Finally, we also have that
p ∈ [−∞, 1) incentivizes redistribution of utility from better-off groups to worse-off groups, and similarly
p ∈ [1,∞) incentivizes redistribution of suffering from worse-off groups to better-off groups.

2.1.4 A Comparison with the Additively Separable Form

In particular, assuming axioms 1-5, all population means are monotonic transformations of the power
mean, thus whether we assume additive separability, and get the additively-separable form

M(S) = c

n∑
i=1

fp(Si) = cnMp
p(S) ,

for p ∈ R \ {0} (where usually c = 1 is taken as the canonical form), or we assume axioms 6 & 7, and get
the power-mean, there is no real loss of descriptiveness, as all such population-means remain isomorphic
under the binary comparison operator (≤). With additive separability, it is straightforward to compute
the welfare of a population from the welfares of subpopulations, but it is still computationally trivial to
do this with power means. Furthermore, the limiting cases of p ∈ ±∞ become undefined in the additively
separable form, and we lose monotonicity in p (see theorem 2.1.7, both of which remedied with power
means.

With additive separability, welfare summarizes population sentiment by intuitively generalizing the
idea of summation. In contrast, in our setting, we prefer to think of welfare as a generalized mean concept.
This yields desirable statistical estimation and learnability properties (see section 2.3), but is also useful
in and of itself, as it allows us to for instance compare individual sentiment values to welfare, as both
the units and scale match.

Another reason to prefer the power-mean over the additively separable form is the potential for direct
comparisons between group sentiments, population means of subgroups, and overall population means. In
particular, the dimensional analysis properties of the power mean are convenient, as these comparisons
agree in dimension (due to axiom 6) and scale (due to axiom 7). No such dimensional analysis is possible
with the additively separable form, as, e.g., if S is measured in dollars, then W2

2(S;w) is measured in
square dollars.

2.1.5 Relating Power Means and Inequality Indices

We now discuss and define relative inequality indices, which have been employed in the literature to
construct welfare functions of the form

W(S;w) = W1(S;w)(1− I(S;w)) .
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1: Monotonicity 2: Symmetry 3: Continuity 4: IOUA 5: IOCS

6: × Lin.

7: Unit-Scale

Mono. in Gen. Mean
M(S) = (F ◦Mf )(S)

Mono. in p-Mean
M(S) = (F ◦Mp)(S)

Scaled p-Mean
M(S) = αMp(S)

p-Mean
M(S) = Mp(S)

Identity
M(α1) = α

8: Pigou-Dalton 9: Anti-Pigou-Dalton

p ≤ 1
Fair Welfare

p ≥ 1
Fair Malfare

10: Bounded S
S ∈ Ω→ [0, r]

11: Uniform
Convergence

12: Convex
Optimization

Fair-PAC-Learnability
∃ poly. sufficient sample size m∗(F , ε, δ, n), ⊥p

Figure 2.1: Relationships between population-mean axioms and properties. Assumptions and axioms
shown in pastel blue, and properties shown in pastel red. Equivalent properties hold for weighted
population mean functions.

This characterization intuitively starts with the utilitarian welfare, which measures overall satisfaction
and then downweights based on how unfairly distributed utility is amongst the population. The “relative”
in relative inequality indices connotes the fact that they are restricted to domain [0, 1].

We show that a large class of such functions are actually power means, which both gives them
axiomatic justification, and shows prior support in the literature for the power mean. In particular, we
first consider the Atkinson index relative inequality measure family [Atkinson et al., 1970].

Definition 2.1.9 (Atkinson Index). For all ε ∈ R, we define the Atkinson index as

Atkε(S;w)
.
= 1− M1−ε(S;w)

M1(S;w)
.

Note that often the Atkinson index is restricted to ε ∈ [0, 1]; outside this range, it may exceed 1.
Furthermore, the Atkinson index is generally stated without weights, and in a mathematically equivalent
form, in which the resemblance to the power mean is less obvious, but for our purposes the above form is
clearer. From it, we immediately have the following lemma.

Lemma 2.1.10 (Relating Atkinson’s Indices and Power Means). Suppose some ε ∈ R, and take p = 1−ε.
It then holds that

Mp(S;w) = M1(S;w)(1−Atkε(S;w)) .

Proof. This is a direct consequence of definition 2.1.9, noting p = 1− ε⇔ ε = 1− p.

This is not particularly surprising in light of the welfare-centric derivation of [Atkinson et al.,
1970], but nonetheless it yields a valuable alternative way to think about power means and inequality-
weighted welfare functions. In particular, it gives a direct axiomatic justification of the welfare function
W(S;w) = W1(S;w)(1 − Atkε(S;w)) (see theorem 2.1.8), and also gives an alternative intuitive
interpretation of power-mean welfare (as inequality-weighted utilitarian welfare).

18



Note that similar properties may be shown for the isomorphic inequality measures of generalized
entropy indices and Theil indices [Theil, 1967], though in this context their forms are generally less
pleasing.

2.2 Welfare and Fairness in Machine Learning
Most prior-work in fair machine learning arguably falls into a single category: adding fairness constraints
to existing risk minimization objectives. Constraints like equalized odds, equality of opportunity, equality
of outcome, and many others, are imposed on various measures of utility U(. . . ) between fairness-sensitive
groups. In particular, given labeled samples z1:n for groups 1, . . . , n we take empirical risk

R̂(h; z, `)
.
= Ê

(x,y)∈z1∪···∪zn

[
`(y, h(x))

]
,

where sample z = (x,x) ∈ (X × Y)m. Now assume some utility function, usually posed as U(ŷ, y),
representing the value an individual places on receiving predicted label ŷ, given true label y, and impose
constraints of the form

C

(
Ê

(x,y)∈z1
[U(h(x), y)], . . . , Ê

(x,y)∈zn
[U(h(x), y))]

)
≤ τ ,

i.e., some function of per-group empirical utilities is constrained.
I argue that under this setup, choice of U(. . . ) is often rather ad-hoc, and, interpreted literally, leads

to absurdity; for instance, if a classifier is to decide whether x committed a crime, and thus is to be
jailed, does the fact of whether x is guilty have any impact on the utility they derive from punishment?
Does the answer change if we cast the potentially rehabilitating effects of imprisonment inside, and ask if
instead x is to be executed? The question is then naturally, whose utility do we seek to optimize? [Kasy
and Abebe, 2020] raise objections to this method of constrained optimization, asking whether it is the
mechanism designer, rather than the groups under consideration, who benefit from such approaches.

Furthermore, except in trivial circumstances, many such constraints are mutually unsatisfiable
[Kleinberg et al., 2017]. [Hu and Chen, 2020] also criticize the approach, showing that in certain cases,
increasing the value of a constraint can actually lead to worse outcomes for disadvantaged groups. One
approach, taken by [Zafar et al., 2017], is to relax such constraints, to instead require only that each
group is at least as well off as if such constraints had been imposed. This notion of envy-free Pareto-like
dominance seemingly lies between constraint-based formulations and direct welfare-maximization.

Previous authors have also considered welfare as a constraint in fair machine learning methods,
although the mechanism by which welfare enters the equation differs substantially from our approach. In
particular, without a notion of malfare, there is no clear way to convert loss, as measured by various
machine learning methods, to utility, as required by welfare concepts.

Now, assuming utility U(. . . ) and welfare function W(·;w), take empirical welfare

Ŵ(h; z1:n,U)
.
= W

(
i 7→ Ê

(x,y)∈zi
[U(y, h(x))];w

)
.

We may then use Ŵ(h; z1:n,U) ≤ τ as a constraint in the standard constraint-based formulation.
This approach is taken, e.g., by [Speicher et al., 2018, Heidari et al., 2018] propose a notion, wherein

we tradeoff between classifier accuracy and welfare (fairness) via a constrained optimization problem,
where empirical risk (across all groups) is minimized, subject to a constraint on empirical welfare; i.e.,
Ŵ(h; z1:n,U) ≥ τ . They assume axioms 1-4 and 8, and consider the additively separable family of welfare
concepts {Wp

p(S) | p ∈ [0, 1]}. However, despite this strong theoretical grounding in welfare-economics,
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and their consideration of efficient computational routines for this constrained minimization, they don’t
consider the statistical aspects of this problem, leaving open the door to overfitting. This is particularly
dangerous in this context, as not only may we overfit to loss (i.e., true risk is higher than empirical), but
also to fairness (i.e., true welfare is smaller than empirical), giving a false sense of security as to the
fairness of an algorithm or model.

We propose instead to consider the empirical risk of a group to be their sentiment value (i.e.,
S(i) 7→ R̂(h; z, `)), and then directly minimize some (empirical) malfare concept W

(. . . ). We term this
objective empirical malfare minimization (EMM), in line with the empirical risk minimization (ERM)
standard in statistical learning theory. There is no tradeoff between the inequality concept W and the
inequality constraint τ , as we have reduced to a single interpretable parameter p.

In generic classification tasks, where a group’s satisfaction is a function of the performance of the
classifier, this is a very natural way of measuring their satisfaction. For instance, image recognition
systems may perform poorly on certain groups, which is reflected in higher risk values on said groups,
and EMM seeks to learn a model that performs well across all groups. This is a serious issue with
many commercial facial recognition tools [Cook et al., 2019], and furthermore, as image recognition sees
increasingly use in law-enforcement, if accuracy of image recognition systems varies across groups, then
false arrests can become more likely in particular groups, which again is captured by high risk for these
groups [Berk et al., 2018]. Note that the malfare-minimization setup is sufficiently general that one
may define arbitrary loss functions, i.e., applying reweighting, confusion matrices, or other arbitrary
measures of displeasure, to capture aspects of a scenario that don’t depend simply on model accuracy;
thus despite our criticism of ad-hoc utility function construction, our setup retains the generality to
perform equivalent ad-hoc loss function construction.

Perhaps the most similar to our work is a method of [Hu and Chen, 2020], wherein they directly
maximize empirical utility over linear (halfspace) classifiers; however again an appropriate utility function
must be selected. We argue that empirical welfare maximization is an effective strategy when an
appropriate and natural measure of utility is available, but in machine learning contexts like this, there
is no “correct” or clearly neutral way to convert loss to utility. Our strategy avoids this issue by working
directly in terms of malfare and loss.

2.3 Statistical Estimation and Learning Theory
We first illustrate the ease of which p-power means can be estimated, in contrast to the standard additive
welfare formulations.

Lemma 2.3.1 (Statistical Estimation). Suppose probability distribution D, population-mean M obeying
monotonicity, sentiment value function S such that, given functions fω, we have S(ω) = Ex∼D[fω(x)],
sample x ∼ Dm, and empirical sentiment value estimate Ŝ .

= Êx∈x[fω(x)]. If it holds with probability at
least 1− δ that ∀ω : S ′(ω)− ε(ω) ≤ S(ω) ≤ S ′(ω) + ε(ω), then with said probability, we have

Mp(0 ∨ (Ŝ − ε);w) ≤ Mp(Ŝ;w) ≤ Mp(Ŝ + ε;w) ,

where a ∨ b denotes the (elementwise) minimum.

Proof. This result follows from the assumption, and the monotonicity axiom (i.e., adding or subtracting
ε can not decrease or increase the power mean, respectively). The minimum with 0 on the LHS is
required simply because by definition, sentiment values are nonnegative, and Mp is in general undefined
with negative inputs.

We now reify this result, applying the well-known Hoeffding and Bennett bounds to show concentration
and derive an explicit form for ε.
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Corollary 2.3.2 (Statistical Estimation with Hoeffding and Bennett Bounds). Suppose fair power-mean
Malfare W

(. . . ) (i.e., p ≥ 1), loss function ` : X → [0, r], S ∈ [0, r]n s.t. Si = EDi [`], samples xi ∼ Dm
i

and Ŝi = 1
m

∑m
j=1 `(xi,j). Then with probability at least 1− δ over choice of x,

∣∣∣Mp(S;w)−Mp(Ŝ;w)
∣∣∣ ≤ r

√
ln 2n

δ

2m
.

Alternatively, again with probability at least 1− δ over choice of x, we have

∣∣∣Mp(S;w)−Mp(Ŝ;w)
∣∣∣ ≤ r ln 2n

δ

3m
+ sup

i∈1,...,n

√
2VDi [`] ln

2n
δ

m
.

Proof. This result is a corollary of lemma 2.3.1, applied to ε, where we note that for p ≥ 1, by
theorem 2.1.7 item 3 (contraction) it holds that

Mp(Ŝ + ε;w) ≤ Mp(Ŝ;w) +‖ε‖∞ & Mp(0 ∨ (Ŝ − ε);w) ≤ Mp(Ŝ;w)−‖ε‖∞ .

Now, for the first bound, note that we take εi
.
= r

√
ln 2n

δ
2m , and by Hoeffding’s inequality and the

union bound, for Ω = {1, . . . , n}, we have ∀ω : S ′(ω)− ε(ω) ≤ S(ω) ≤ S ′(ω) + ε(ω) with probability at
least 1− δ. The result then follows via the power-mean contraction (theorem 2.1.7 item 3) property.

Similarly, for the second bound, note that we take εi
.
=

r ln 2n
δ

3m +

√
2VDi

[`] ln 2n
δ

m , which this time
follows via Bennett’s inequality and the union bound. Now, we again apply lemma 2.3.1, noting that
M(ε) ≤ M∞(ε) = ‖ε‖∞ (by power-mean monotonicity, item 1 item 1), and the rest follows as in the
Hoeffding case.

As corollary 2.3.2 follows directly from lemma 2.3.1, with Hoeffding and Bennett inequalities applied
to derive ε bounds, similar results are immediately possible with arbitrary concentration inequalities.
In particular, we can show data-dependent bounds may be shown, e.g., with empirical Bennett bounds,
removing dependence on a priori known variance. In particular, we may apply theorem 1.3.3 to bound ε,
either elementwise (over groups) with a union bound, or jointly, if the loss functions for each group may
be combined into a single function family.

Furthermore, note that while these bounds may be used for evaluating the welfare or malfare of
a particular classifier or mechanism (through S and Ŝ), they immediately extend to learning over a
finite family via the union bound. Much like in standard statistical learning theory, the exponential tail
bounds of corollary 2.3.2 allow the family to grow exponentially, at linear cost to sample complexity.
Also as in standard uniform convergence analysis (generally discussed in the context of empirical risk
minimization), we can easily handle infinite hypothesis classes and obtain much sharper bounds by
considering uniform convergence bounds over the family, i.e., with Rademacher averages and appropriate
concentration-of-measure bounds.

In all cases, these bounds provide further justification for using the power-mean over the additively
separable form, as it is substantially harder to achieve comparable bounds on Mp

p(S;w), due to the
increased difficulty of controlling the range and Lipschitz constant of these quantities. Of course, as
power-mean bounds imply bounds on the additively-separable form (and vice-versa), we recommend
working with power means, and then converting back to the additively separable form (if so desired).

2.3.1 Characterizing Fair Learnability

We now characterize a notion of fair-learnability in machine learning, reminiscent of standard probably
approximately correct (PAC) learning guarantees of Valiant [1984]. In particular, we generalize to our
definition to arbitrary supervised learning problems (i.e., beyond binary classification with 0-1 loss), and
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to agnostic learning problems, and settings with non-zero Bayes risk (i.e., so-called noisy problems,
where x does not uniquely determine y). Following the original conception of PAC-learnability, we
also include computational considerations in our definition; i.e., it is predicated on the existence of an
efficient training algorithm. Some authors, e.g., Shalev-Shwartz and Ben-David [2014, Definition 3.1]
and Mitzenmacher and Upfal [2017a, Definition 14.9], consider computational complexity a separate
issue, and instead define PAC-learnability as requiring polynomial sample complexity, though doing
so leads to a breakdown in the learnability hierarchy (i.e., finite VC dimension, PAC-learnability, and
agnostic PAC-learnability become equivalent, see Shalev-Shwartz and Ben-David [2014, thm. 6.7]). Our
definition requires a computationally efficient training procedure, but this requirement may be removed
by assuming a training oracle. Following our definition, we show sufficient conditions under which an
algorithm is fair-PAC-learnable.

For context, we first present a generalized notion of PAC-learnability, which we then generalize to
fair-PAC-learnability. In the realizable case, we assume ∃h∗ ∈ H s.t. RD(h

∗; `) = 0, which restricts the
space of possible probability distributions. For reasons that shall later be made clear, we consider only
the agnostic learning case, where this assumption is dropped.

Definition 2.3.3 (Agnostic PAC-Learnability). Suppose a hypothesis class H ⊆ X → Y, and loss
function ` : Y × Y → R0+. We say H is PAC-learnable w.r.t. ` if ∃ a (randomized) algorithm A, such
that ∀:

1. instance distributions D over X × Y;
2. additive approximation error ε > 0;
3. failure probability δ ∈ (0, 1);

it holds that A can identify a hypothesis ĥ ∈ H such that

1. A has Poly(1/ε, 1/δ) expected sample complexity;
2. with probability at least 1− δ (over randomness of A), ĥ obeys

E
(x,y)∼Di

[
`(y, ĥ(x))

]
≤ argmin

h∈H
E

(x,y)∼Di

[
`(y, h(x))

]
+ ε .

Note that this substantially differs from the original presentation of PAC-learning [Valiant, 1984],
which handles only binary classification with 0-1 loss, and we consider PAC-learnability w.r.t. a particular
(arbitrary) loss function. Note that PAC-learnability is a property of both H and `, and we can not hope
for uniform guarantees over arbitrary loss functions.

We now generalize PAC-learnability to fair-PAC-learnability.

Definition 2.3.4 (Fair Agnostic PAC-Learnability). Suppose a hypothesis class H ⊆ X → Y, and loss
function ` : Y ×Y → R0+. We say H is fair PAC-learnable w.r.t. group count n and loss function ` if ∃
a (randomized) algorithm A, such that ∀:

1. instance distributions D1:n over (X × Y)n;
2. group weights measure w over {1, . . . , n};
3. malfare concept W

(. . . ) satisfying axioms 1-7 and 9;
4. additive approximation error ε > 0;
5. failure probability δ ∈ (0, 1);

it holds that A can identify a hypothesis ĥ ∈ H such that

1. A has Poly(1/ε, 1/δ) expected sample complexity.

22



2. with probability at least 1− δ (over randomness of A), ĥ obeys

W

(
i 7→

(
E

(x,y)∼Di

[
`(y, ĥ(x))

])
;w

)
≤ argmin

h∈H

W

(
i 7→

(
E

(x,y)∼Di

[
`(y, h(x))

])
;w

)
+ ε .

Note that this definition is extremely specific, and perhaps our axiomatization and all previous
relevant results should be viewed as leading up to it. We first discuss a few highly precise definitional
choices, and explain why they are equivalent to classes that perhaps seems broader or more specific at
first glance. We then discuss the motivations for particular assumptions, and how they relate to our
previous analysis of the cardinal welfare axioms and their statistical estimation properties. First note
that assuming an instance distribution D1:n over (X ×Y)n is important to remain general over sampling
strategies. In many cases, each marginal distribution Di is available separately, and we sample from them
independently, however in some learning problems, it may make more sense to sample in a dependent
manner. As the definition is not sensitive to polynomial complexity changes, being unable to directly
sample the marginal distributions is inconsequential.

We now discuss the deeper motivation and consequences of definition 2.3.4 Fair-PAC-learnability must
hold uniformly over the choice of instance distributions D1:n; i.e., the concept is inherently distribution-
free, in the sense that we require a fair algorithm to be able to (agnostically) learn fairly under any
circumstances. To this end we also require uniformity over fairness concepts (item 2; choice of w, and
item 2; choice of W

(·;w)); consequently, (upper-bounds to) time, space, entropy, and sample complexity
must hold for all p ≥ 1, i.e., they may not depend on p. This is perhaps our strongest use of the unit
scale and multiplicative linearity axioms, without which welfare and malfare functions may be arbitrarily
scaled and monotonically transformed. From our statistical bounds (lemma 2.3.1), we see that learning
becomes statistically more challenging for as p increases, due to dependence on p-norms and monotonicity
in p of W

p(·;w), but statistical learning theory is well-equipped to handle even the limiting case of p =∞.
We soon reify this definition by showing highly generic conditions under which classifiers guarantee fair
PAC-learnability.

Fair PAC-learning and computational efficiency Note that we specifically assume fixed n, and in
the case of n = 1, the definition coincides with that of (agnostic) PAC-learnability. Furthermore, if we wish
to consider computational efficiency, we may strengthen condition 1 to “A has Poly(1/ε, 1/δ) expected time
complexity.” We term this stronger requirement efficient fair-PAC-learnability, following the convention
of [Shalev-Shwartz and Ben-David, 2014, Mitzenmacher and Upfal, 2017a]. This convention is convenient,
as we shall see that additional conditions are required to show efficiency, so we may distinguish between
sample-efficient and computationally efficient fair learning algorithms. An even stronger requirement
would be to require A to work uniformly over choice of n, and require “A has Poly(1/ε, 1/δ, n) expected
time complexity.”

A note on realizability The natural generalization of realizable PAC-learning to fairness is to assume
∃h∗ ∈ H s.t. ∀i ∈ {1, . . . , n} : RDi(h

∗; `) = 0, in which case no real tradeoffs exist, as all groups may be
perfectly satisfied simultaneously. This h∗ is thus optimal for any malfare concepts satisfying axioms
1-7 and 9, and may be identified via (standard) PAC-learning over the mixture distribution D1:n, thus
realizable fair PAC-learning reduces to realizable PAC-learning. The concept is also philosophically
uninteresting, as scarcity begets conflict, and only then must fairness-sensitive tradeoffs occur. We thus
consider only agnostic learning, wherein no such mutual satisfiability assumption is made.

Sufficient conditions for fair PAC-learnability As noted by [Blumer et al., 1989], PAC-learnability
and finite VC-dimension [Vapnik and Chervonenkis, 1968] are essentially equivalent (subject to basic
regularity conditions). We now extend this analogy to fair-PAC-learning.
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Theorem 2.3.5 (Fair PAC-Learning with Vapnik-Chervonenkis Classes and Covering Numbers). Suppose
H has finite VC-dimension d, and the projection of H onto x ∈ Xm can be enumerated in Poly(m) time
(wherein d is a constant). Then H is fair-PAC-learnable.

Furthermore, suppose generic H ⊆ X → Y, ` ∈ Y × Y → [0, 1], and assume that

1. Y is a set of diameter DY , and ` is λ`-Lipschitz continuous;
2. the `2 covering number N (H,x, γ) ∈ Poly(m, 1/γ);
3. a γ-precision cover C(H,x, γ) of size O(N (H,x, γ)) may be enumerated in Poly(m, 1/γ) time.

Then H is efficiently fair-PAC-learnable. Items (1) and (2) are sufficient to show that H is fair-PAC
learnable; (3) is required only to show efficiency.

Proof Sketch. First, note that the Vapnik-Chervonenkis conditions on H immediately imply that, given
samples x1:n, each of size m, each covering number N (H,xi, γ) ∈ Poly(m, 1γ ) ≤

∑d
i=1

(
m
i

)
≤ md, by the

Sauer-Shelah lemma, where the VC-dimension d is constant (w.r.t. fixed H), and also, by assumption,
this cover may be enumerated in Poly(m) = Poly(m, 1/γ) time. The first case thus reduces to a special
case of the second.

I now sketch a proof of the general case. We first take cover precision γ
.
= ε

3DYλ`
. We then show

that, taking ĥ to be the EMM solution w.r.t. a cover of this precision, and h̃ to be the exact EMM
solution w.r.t. all of H, it holds that the empirical malfare of ĥ does not exceed that of h̃ by more than ε

3 .
We then apply standard covering-number bounds on Rademacher averages to show that a (polynomial)
sufficient m exists to guarantee h̃ generalizes with 2ε

3 -δ malfare error guarantees. In particular, by the
Dudley discretization method, a ε

3 discretization error term appears, and we set m such that a ε
3 covering

number term appears, for a total of 2ε
3 . Combining these bounds on the optimization and approximation

errors yields the desired additive ε-δ guarantees.
Note that (3) implies that the cover may be efficiently enumerated, thus guaranteeing polynomial

time complexity.

This immediately implies H that are finite, of bounded pseudodimension, or bounded fat-shattering
dimension are fair-PAC-learnable. For instance, this gives us classifiers such as all possible languages of
Boolean formulae over d variables, or halfspaces (i.e., linear hard classifiersH .

= {~x 7→ sgn(~x· ~w) | ~w ∈ Rd}),
as well as generalized linear models, subject to regularity constraints to appropriately control the loss
function. However, it is perhaps not as powerful as it appears; it applies to fixed hypothesis classes,
thus each of the above linear models over Rd is fair-PAC learnable, but it says nothing about their
performance as d→∞.

Note also that theorem 2.3.5 leverages covering arguments in both their statistical and computational
capacity. Statistical bounds based on covering are generally well-regarded, particularly when strong
analytical bounds on covering numbers are available, although sharper results are possible (e.g., through
the entropy integral or majorizing measures). Furthermore, while we do construct a polynomial time
training algorithm, in many cases, optimization methods (e.g., gradient descent, Newton’s method) exist
to perform EMM more efficiently and with higher accuracy. Worse yet, efficient enumerability of a cover
may be non-trivial in some cases; while most covering arguments in the wild are either constructive,
or compositional to the point where each component can easily be constructed, it may hold for some
problems that computing or enumerating a cover is computationally prohibitive.

Despite these limitations, this theorem characterizes a large class in which fair learning is tractable
(both statistically and computationally). In particular, it contains VC, bounded pseudodimension, and
bounded fat-shattering dimension classes in which ε-ERM is efficient.

We now show alternative meta-conditions, which leverage convex-optimization tools to derive highly-
general EMM algorithms and show fair-PAC learnability. This is the most practical of our fair-PAC-
learnability results, as the algorithm employed by the constructive proof is quite efficient, and we
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recommend its use in practice. However, it is also the most restrictive, as we must assume a lot about
the structure of H to ensure efficient convex optimization.

Theorem 2.3.6 (Fair PAC-Learning with Convex Optimization). Suppose H is agnostic-PAC-learnable,
and ∃ algorithm A to agnostic-PAC-learn H w.r.t. some loss function `, where A simply applies a generic
optimization routine O that requires only that the objective is bounded, smooth, and convex. Then H is
fair-PAC learnable w.r.t. `.

Proof Sketch. We show this result constructively. By assumption, we know there exist A,O, such that
A PAC-learns H by drawing a polynomially large sample (x,y), and applying O to optimize empirical
risk. In our construction, we instead optimize empirical malfare, and the properties of A ensure efficient
approximate optimality.

To close this section, we now show a convenient, generic, and modular constructive characterization
that yields fair-PAC-learnability for an extremely broad class of learning problem. The constructive
training algorithm is also efficient for fixed group-count n, though its runtime is exponential in n. This
construction makes no structural assumptions about H, and assumes only that loss values of ERM
solutions are stable under small perturbations to training data (i.e., no structural assumptions, e.g.,
convexity on H, nor assumptions on the structure of the PAC-learning algorithm, are required). Then if
H is PAC-learnable w.r.t. `, it is also fair-PAC-learnable.

Theorem 2.3.7 (Fair PAC-Learning with Grid Reweighting). Suppose loss function ` and hypothesis
class H, such that for any x ∈ Xm, x′ = x1, . . . ,xm, x′, taking ERM ĥ, ĥ′ over x,x′, respectively, it
holds that, for some stability constant B we have

R̂(ĥ;x)− R̂(ĥ′;x) ≤ B
m .

Then if H is PAC-learnable w.r.t. `, then H fair PAC-learnable for bounded n w.r.t. `. Furthermore,
if H is efficiently-PAC-learnable w.r.t. `, then H fair PAC-learnable for bounded n w.r.t. `.

Proof Sketch. The strategy here is to create a grid-cover of reweightings of the n groups. We construct
a cover of reweightings of the n groups, and show the S-weighted malfare is Lipschitz continuous in
reweighting S ′. We then PAC-learn each reweighting, and take the empirically-malfare-minimal solution.

Note that the Lipschitz or stability condition R̂(ĥ;x)− R̂(ĥ′;x) ≤ B
m

is required to bound the size of
the grid-cover; without this assumption, we can’t guarantee that a finite-grid is sufficient.

Nonlearnability and a warning in closing We caution against blindly applying such methods in
other settings without learnability guarantees, such as learning with local optimization or proxy losses,
without carefully considering the fairness implications. For instance it may be the case that training an
SVM with hinge loss as a proxy for ramp loss or 0-1 loss results in a few high-hinge-loss outliers for
group A, thus unfairly incentivizing better treatment of group A, at the cost of performance for group B.
Similarly, optimizing a neural network may converge to a locally optimal solution that favors some easily
mutually satisfied subset of groups, and thus may terminate before identifying a solution that works
for all groups. In this sense, without learnability guarantees, we are unable to ensure fairness, making
similar claims of fairness in these settings naively optimistic at best, and shallow platitudes at worst.
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Chapter 3

Ewoks: an Algorithm for Fair Codec Selection
3.1 Introduction

Streaming video now accounts for an estimated 58% of all internet traffic [Sandvine, 2018], thus there is
strong user demand and economic incentive to optimize stream quality and resource utilization. Most
streamed audio and video data is compressed with a codec (coder-decoder), with complicated, subjective,
multivariate (often conflicting) objectives; for example resource utilization metrics, (e.g., compression
ratio, encode/decode CPU time), fidelity / distortion (quality) metrics, and fault tolerance, are all
important, to varying degrees for various users, applications, and media types. Furthermore, while codecs
are generally developed and tested on particular use cases (e.g., lossless audio, low-bandwidth speech
data, various qualities of music data), and relative performance on each attribute varies depending on
the media being encoded.

While many codecs purport efficacy for various use cases, little effort has been put into rigorous
multivariate comparative statistical analysis. In practice, sets of streaming media codecs are generally
selected ad-hoc by domain experts to target particular bitrates or quality thresholds, which may be
suboptimal for users with different preferences, or over different media distributions. For example,
low-quality mp3 encodings may be used for a low-bitrate music stream, and lossless FLAC encodings for a
high-quality stream, but for a speech stream, there exist specialized codecs that will achieve higher quality
than a general-purpose codec at a given compression ratio. Furthermore, relative codec performance
across media is inconsistent, and usually selecting the best encoding among a set of codecs outperforms
any individual codec on average.

The multivariate aspect of the codec-selection problem induces both deep theoretical quandries and
impactful real-world fairness and algorithmic bias issues. New technologies often fail to adequately serve
global users, resulting in products with varying degrees of success across markets, harming both potential
users and developers. We model the preferences of a user with a loss function ` mapping codec attributes
to user dissatisfaction, and model user diversity by considering a set or distribution L over loss functions.

We address all of these issues with a novel fair media streaming strategy, employing a codec set
c, s.t. when a user with loss function ` requests media x, we return the encoding c(x) for c ∈ c that
minimizes (` ◦ c)(x), thus optimizing for data-dependent user preference. We then propose the Empirical
Welfare-Optimal k codec Selection (Ewoks) algorithm, which learns a data-dependent set of k codecs c
that is welfare-optimal over L. Data-dependence is key, as Ewoks considers each codec in an unbiased
way, allowing empirical performance to dictate whether it is selected, which automates the process of
selecting domain-appropriate codecs, eliminating bias due to distribution-shift.

While various welfare concepts characterize different notions of fairness, Ewoks is not tied to any
particular welfare function. Rather, we show how to optimize and bound generalization error across a
broad class of welfare concepts, where both utilitarian and egalitarian welfare arise as special cases.

It may be computationally intractable to optimize welfare over large datasets, and one may wish to
approximate with a sample [see e.g. Riondato and Upfal, 2015, 2016, 2018], and in dynamic settings,
new media are continuously uploaded, and thus are unavailable during training. We show that Ewoks
solutions are not only empirically optimal, but also approximately optimal over the underlying media
distribution of the training data, thus mitigating overfitting concerns, by posing codec selection as a
statistical learning problem and showing data-dependent uniform-convergence bounds.

We show novel finite-sample data-dependent welfare-generalization bounds with Monte-Carlo Rademacher
averages [Koltchinskii, 2001, Bartlett and Mendelson, 2002] and modern entropy-method concentration
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inequalities [Boucheron et al., 2003, 2013], which outperform standard Martingale-based Rademacher
bounds [Mitzenmacher and Upfal, 2017b], particularly in the small-sample setting. Our bounds are
sensitive to the empirical variances of codec performances, and can substantially improve upon the
generalization guarantees of variance-insensitive methods. Such welfare-generalization guarantees are
particularly important, as unlike with risk and loss functions, empirical welfare is not an unbiased
estimator of welfare.

We now summarize our contributions:

1. We introduce k codec selection, reframing traditionally manual codec selection as a supervised learning
problem, and propose the Ewoks algorithm it.
2. We control for algorithmic bias and fairness issues by learning distribution-dependent models and
robustly optimizing over a broad class of welfare concepts.
3. We show welfare generalization bounds through uniform convergence theory and novel sharp variance-
sensitive tail bounds.
4. We validate experimentally that Ewoks robustly controls for overfitting and unfairness due to
optimizing for specific user models or data distributions.

3.2 The Ewoks Algorithm
In the codec selection framework, we assume media exist in some space X , and a family C of codecs,
which act as functions from X onto a compressed X ′ and back, which we abstract to functions from X
onto the space of attribute values Ra

0+. Attributes represent various objectively measurable properties
such as quality and resource utilization metrics. For example, mp3, with fixed encoder hyperparameters,
is a codec, and the quality / distortion metrics and compression ratio are attributes of an encoding. We
generally assume monotonically minimizing each objective is desirable (i.e., decreasing some attribute
while others remain constant is never bad), though often this may be relaxed.

We also assume a family L ⊆ Ra
0+ → R0+ of loss functions, such that each loss ` ∈ L, codec c ∈ C,

media sample x ∈ X , (`◦ c)(x) quantifies the subjective dissatisfaction of ` on encoding c(x). Therefore L
represents the space of user preferences for various options and tradeoffs, for instance for video framerate,
quality, resolution, and compression ratio. In other words, the family L objectively captures the subjective
desiderata of users, each represented by some ` ∈ L. While each ` ∈ L is an objective metric, by
considering all of L simultaneously, we remain sensitive to the subjective nature of the problem.

Given a set c of k codecs, when a user with some loss function ` requests media x ∈ X , we serve
the request by selecting the c ∈ c that minimizes (` ◦ c)(x), and returning (c, c(x)). Consequently, it’s
generally sufficient to select a codec set such that on average (over the media distribution), at least one
codec is satisfactory for each user. We quantify the aversion of a user with loss function ` to codec set c
over media distribution D with the risk

R(c; `,D) .
= E

x∼D

[
min
c∈c

(` ◦ c)(x)
]

. (3.2.1)

The brief explanation above, and the optimality concepts discussed in the sequel, are sufficient to
understand and analyze Ewoks.

3.2.1 Welfare-Optimal k codec Selection

Given a large codec family C, the computation and storage costs of serving each query with the optimal
c ∈ C become prohibitive. Depending on the data distribution D and user needs (represented by L),
many codecs may contribute little marginal benefit, hence a subset of C is often sufficient. For a single
loss function `, `-optimality encourages selecting a diverse codec set c, as there is little marginal benefit
to adding a high-performing codec c to c if its performance is highly correlated with some c′ ∈ c (as
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may occur with similar encoding algorithms or parameters). Furthermore, in general, Ewoks considers a
loss family L in aggregate, and welfare-objectives incentivize selecting a diverse codec set that performs
well for all ` ∈ L. In short, our goal is to select some c ⊆ C from among the set of size-k subsets of C,
henceforth written

(C
k

)
, that performs well in aggregate over L w.r.t. D.

With a specific user or objective use-case, represented by loss function `, risk is the natural way to
quantify performance. We then define the risk minimizer c∗` as

c∗`
.
= argmin

c∈(C
k
)

R(c; `,D) . (3.2.2)

With a family or distribution L over loss functions, we face tradeoffs as to the degree to which each
` ∈ L may be satisfied. One approach to algorithmic fairness and robustness against arbitrary use-cases
is to select a set of codecs c that optimizes worst-case performance (minimax-optimality) over L. This
corresponds to the egalitarian-welfare optimal solution concept over L. Welfare concepts capture various
aspects of multivariate optimality in multi-agent systems [Gibbons, 1992], and egalitarian welfare ensures
fairness, because it always incentivizes selecting c to benefit the least-satisfied users. Alternatively,
utilitarian welfare considers the mean loss across a distribution over users, which is fair in a different
sense. Utilitarian welfare will not ignore the desires of large groups in favor of improving small worst-case
groups, though in ML systems it may create positive feedback loops, magnifying preexisting inequity.
Rather than argue for a particular welfare concept, a deep philosophical choice which depends on many
extrinsic factors, we show that our statistical methods are sufficient to control for generalization error
within a broad class of welfare concepts.

In general, take welfare concept M(c;L,D) to be a function that takes a codec set c, a distribution
over loss functions L, and a media distribution D over X , and yields a real-valued measure of overall
well-being. In this section, we show all results in full generality, but for intuition, recall the power
mean definition 2.1.6. We also refer to both welfare and malfare as welfare, as whether we wish to
minimize or maximize depends on whether codec attributes are positive or negative (e.g., positive quality
or negative distortion). Recall that Mp(. . . ) is monotonic in p, 1 & ∞ correspond to utilitarian and
egalitarian welfare, respectively, and intermediate p are of interest as compromises thereof (e.g., the
p = 2 quadratic welfare lies between egalitarian and utilitarian welfare, and weighs high-risk users more
heavily than low-risk groups). We require only that M(·) is λ-Lipschitz continuous in the `∞-norm of
` 7→ Ex∼D[minc∈c(` ◦ c)(x)] (i.e., an ε-perturbation to all risk values changes M(·) by ≤ λε). We also
assume that M(·) is monotonic in the risk of each user, making Pareto-optimality a meaningful optimality
concept.

Given loss function family or distribution L, media distribution D over X , and welfare concept M(·),
we now quantify the performance of some k codec selection c ∈

(C
k

)
as its welfare w.r.t. M(·). The

M-optimal codec set c∗M is then defined as

c∗M
.
= argmin

c∈(C
k
)
M(c;L,D) . (3.2.3)

3.2.2 Empirical Welfare Optimization

We now consider the task of approximating the risk-optimal c∗` or welfare-optimal c∗M, given only a
sample x ∼ Dm. We define the empirical risk R̂(c; `,x) as the sample average loss

R̂(c; `,x)
.
= Ê

x∈x

[
min
c∈c

(` ◦ c)(x)
]

, (3.2.4)

and similarly, define the empirical risk minimizer ĉ` as

ĉ`
.
= argmin

c∈(C
k
)

R̂(c; `,x) , (3.2.5)

corresponding to eqs. 3.2.1 and 3.2.2, respectively.
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Similarly, for welfare M(·), we take the empirical welfare M̂(c;L,x) to be welfare computed with
empirical risk R̂(c; `,x) instead of risk R(c; `,D), and define the empirical welfare minimizer, by analogy
with equation 3.2.3, as

ĉM
.
= argmin

c∈(C
k
)

M̂(c;L,x) . (3.2.6)
The Empirical Welfare-Optimal k codec Selection (Ewoks) algorithm computes ĉM as a proxy for

c∗M. We assume the combinatorial optimization aspect of this task is tractable via enumeration, or by
exploiting its inherent submodularity (diminishing returns in adding codecs), as usually the computational
bottleneck is encoding each xi with each c ∈ C. Although Ewoks is straightforward, the difficulty arises
in determining the minimum sample size that guarantees that the welfare (over D) of ĉM approaches
that of c∗M.

In the statistical parlance, the empirical risk is an unbiased estimator of risk, i.e., E[R̂(c; `,x)] =
R(c; `,D), and ĉ` is an M-estimator [Huber, 1964]. The Empirical Risk Minimization (ERM) paradigm
[Vapnik, 1992] states that ĉ` is a reasonable proxy for c∗` , and much of statistical learning theory quantifies
the finite-sample selection bias (overfitting) of ĉ`. Similarly, with insufficient data, ĉM can overfit, in
which case the estimation error M(ĉM;L,D) −M(c∗M;L,D) � 0, and ĉM is a poor proxy for c∗M. In
general, the empirical welfare is a biased estimator of welfare (i.e., E[M̂(c;L,x)] 6= M(c,L,D)), however
in section 3.2.3 we show tail bounds on the welfare-estimation error, thus controlling for overfitting and
providing methods to guarantee that Ewoks solutions are statistically significant.

Note that k is a fixed hyperparameter of the Ewoks algorithm, and should be selected to balance
the tradeoff as k increases between the cost of managing more codecs and increased overfitting against
empirical-welfare improvement. As model complexity increases in k, optimizing k to balance the
bias-variance tradeoff is statistically-efficient with structural risk minimization [Koltchinskii, 2001].

3.2.3 Generalization Analysis

We now show exponential tail bounds on the welfare optimality-gap M(ĉM;L,D)−M(c∗M;L,D). We
bound the supremum deviation over all risk values with novel variance-sensitive tail bounds which we
then use to bound the welfare optimality-gap. Here it is convenient to discuss a generic function family,
so given codec family c ⊆ X → Ra

0+, loss family L ⊆ Ra
0+ → R0+, and k ∈ N, we define

F .
= min◦L◦

(C
k

)
=
{
x 7→min

c∈c
(`◦c)(x)

∣∣c∈(Ck), `∈ L} .

F captures the k codec selection-specific details of the problem, thus we seek to show uniform convergence
over F , which we will use to bound the gap between empirical and expected welfare of Ewoks solutions.

Definition 3.2.1 (Rademacher Averages). Suppose distribution D over X, sample x ∈ Xm, n Monte-
Carlo trials, and Rademacher matrix σ ∈ (±1)n×m. We define
1. for fixed σ and x, the n-Monte-Carlo Empirical Rademacher Average (n-MCERA):

R̂
n
m(F ,x,σ) .

=
1

n

n∑
j=1

sup
f∈F

∣∣∣∣ 1m
m∑
i=1

σj,if(xi)

∣∣∣∣ ;

2. averaging over σ ∼ i.i.d. Rademacher (uniform on ±1), the Empirical Rademacher Average (ERA):

R̂m(F ,x) .
= E

σ

[
R̂

1
m(F,x,σ)

]
; &

3. averaging over x∼Dm, the Rademacher Avg. (RA): Rm(F ,D) .
= E

x

[
R̂m(F,x)

]
.

The n-MCERA is a Monte-Carlo estimate (w.r.t. σ) of the ERA, and the ERA is a sample estimate
(w.r.t. x) of the RA. Recall that through symmetrization, we have

E
x

[
sup
f∈F

∣∣∣∣ED[f ]− Ê
x
[f ]

∣∣∣∣︸ ︷︷ ︸
Supremum Deviation

]
≤ 2Rm(F ,D

)
, (3.2.7)
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where the supremum deviation (SD) uniformly bounds the gap between empirical and expected values of
each f ∈ F simultaneously.

While RAs control the expected SD, and boundedness is sufficient to obtain sharp tail bounds on the
convergence of n-MCERA and ERA to the RA, sharp bounds on the SD require also that the variance
of each f ∈ F is controlled. We define the wimpy variance (see Boucheron et al. [2013, ch. 11]), and our
novel estimate, the empirical wimpy variance as

v
.
= sup

f∈F
V
D
[f ] & v̂

.
= sup

f∈F

1

m

m∑
i=1

(
f(xi)− Ê

D
[f ]
)2

,

respectively. We now show bounds that quantify the relationships between the SD, n-MCERA, v, and v̂
in the following novel theorem, which enjoys the asymptotic improvements of variance-sensitive bounds
[Bousquet, 2002] without assuming a priori variance knowledge. In particular, our bound excels in the
small-sample setting for bounded functions of uniformly low variance, as occurs in the codec selection
problem.

Theorem 3.2.2 (Variance-Sensitive Bounds). Suppose distribution D over X , training sample x ∼ Dm,
Monte-Carlo trial count n, i.i.d. Rademacher matrix σ ∈ (±1)n×m, codec family C, loss family
L ⊆ Ra

0+ → [−r, r], λ-Lipschitz welfare M(·), and codec selection size k. ∀δ ∈ (0, 1), let F .
= min ◦L◦ (C

k
),

take v̂ to be the empirical wimpy variance of F over x and v̂raw to be the empirical raw wimpy variance,
and take

1. εERA
.
=

4r 4
δ

3nm
+

√
4v̂raw ln 4

δ

nm
;

2. εRA
.
=

2r ln 4
δ

m
+

√
2r(R̂

n
m(F,x,σ) + εERA) ln

4
δ

m
;

3. R̃ .
= R̂

n
m(F,x,σ) + εERA + εRA;

4. ṽ
.
= m

m−1 v̂ +
4r2 ln 4

δ

m
+

√
2r2v̂ ln 4

δ

m− 1
; &

5. εSD
.
=

r ln 4
δ

3m
+

√
2(ṽ + 4rR̃) ln 4

δ

m
.

It then holds with with pr. ≥ 1− δ over x,σ that

1.
∣∣∣M(ĉM,L,D)− M̂(ĉM,L,x)

∣∣∣ ≤ 2λR̃+ λεSD &

2. M(ĉM,L,D)−M(c∗M,L,D) ≤ 4λR̃+ 2λεSD .

The details of the proof are rather cumbersome, but the key idea is that we take a union bound over
4 probabilistic upper-tail-bounds; in particular, w.h.p., v ≤ ṽ (1 tail bound), and Rm(F,D) ≤ R̃ (2 tail
bounds for n-MCERA → ERA → RA). The fourth tail bound is on the SD of F , which by Lipschitz
properties yields bounds on welfare-gaps. Note that if we assume λ = 1, 4R̃+ 2εSD is

4R̂
n
m(F,x,σ) +Θ

(
r ln1

δ

m
+

√
(v+rRm(F,D)) ln1

δ

m

)
. (3.2.8)

With worst-case variance v = r2/4, we recover the slow-decaying Θ
√
r2ln1

δ/m McDiarmid [1989] terms of
standard methods, however generally we get asymptotic mixed-rate convergence, where the Θ(r ln1

δ/m)

term depends on the scale r, but decays quickly in m, and the Θ
√
(v+rRm(F,D))ln1

δ/m term depends
on
√
v instead of r, but decays slowly in m. Note that the latter term simplifies to Θ

√
v ln1

δ/m when
we consider the limiting behavior as m→∞ and assume Rm(F ,D) tends to 0, thus the essence of the
bound is fast-decay as r/m plus slow decay as

√
v/m.

This dichotomy is key to understanding the bound’s strong performance in the small sample setting:
we see initial rapid decay while the r term is dominant, followed by slow decay as the

√
v term comes

to dominate. Where the transition occurs is primarily dictated by the relative values of r and v, but
for sufficiently small v, we see fast-decaying tail bounds and excellent performance in the small-sample
regime (see section 3.3.3).
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3.2.4 Linear Loss Families

For large C and k, it can become computationally intractable to compute the wimpy variance and
n-MCERA, and in general they are rather opaque, due to the supremum over codec combinations and
the minimum over selected codecs. We now show simple compositional bounds for linear loss families
mapping attribute vectors a ∈ Ra

0+ onto R0+, taking

Lp
.
= { `(a) .

= w · a | w ∈ Ra
0+ s.t. ‖w‖p ≤ 1 } (3.2.9)

for p ≥ 1. To control the range of Lp, we assume also a bounded domain X , in particular we assume
bounded q-norm for q

.
= p−1

p , or q = 1 for p =∞, thus ‖·‖p and ‖·‖q are dual norms (i.e., by Hölder’s
inequality,

∣∣w · c(x)∣∣ ≤ ‖w‖p‖c(x)‖q). We now show that both the variance and ERA of the (nonlinear)
k codec selection problem can be bounded with their (linear) counterparts in 1 codec selection.

Theorem 3.2.3 (Bounds for Linear Loss Families). Suppose p, q, s.t. |p−1|+ |q−1| = 1, codec family C,
Lp as in equation 3.2.9, and assume sup

c∈C,x∈X
‖c(x)‖q ≤ s. For all k ∈ 1, . . . |C|, take Fk

.
= min ◦Lp ◦

(C
k

)
,

and v̂k to be the empirical wimpy variance of Fk on sample x. Taking Ĉx[c] ∈ Ra×a to denote the
empirical covariance matrix of the attributes of codec c over x, and ‖·‖p→q to be the `p-`q operator norm,
we have

v̂1 = sup
c∈C

sup
`∈L

V̂
x
[` ◦ c] ≤ sup

c∈C

∥∥Ĉ
x
[c]
∥∥
q→p

, & R̂
n
m(F1,x,σ) ≤ 1

n

n∑
j=1

sup
c∈C

∥∥∥∥∥ 1
m

m∑
i=1

σj,ic(xi)

∥∥∥∥∥
q

.

Furthermore, for any a, b ∈ N s.t. k = a+ b, we have
v̂k ≤ v̂a + v̂b ≤ kv̂1 , & R̂m(Fk,x) ≤ R̂m(Fa,x) + R̂m(Fb,x) ≤ kR̂m(F1,x) .

Here we see that linearity of Lp is convenient, though it does not in general convert the Ewoks
problem to a linear problem, due to the minimum over selected codecs. However, F1 is completely linear,
thus for k = 1 it is easy to compute Rademacher averages and variances. With sufficient computational
resources, R̂m(Fk,x) and v̂k can be computed as precisely as required, and theorem 3.2.3 allows us to
trade statistical efficiency for computational efficiency by truncating the computation at some selection
size j < k, and then loosely bounding R̂m(Fk,x) and v̂k in terms of R̂m(Fj ,x) and v̂j , with particularly
efficient computation for j = 1. We now illustrate the use of theorem 3.2.3 with a simple corollary for
the `2 linear loss family.

Corollary 3.2.4 (Bounds for Linear Loss Families). Suppose as in theorem 3.2.3, and also p = q = 2,
and all attribute values are contained by the unit sphere. Then

v̂k ≤ k sup
c∈C

∥∥∥∥Ĉx [c]
∥∥∥∥
2→2

,

where ‖·‖2→2 is the spectral norm (largest eigenvalue). Additionally, with pr. ≥ 1− δ over x,σ, we have

R̂m(Fk,x)≤k

(
R̂

n
m(F1,x,σ) +

√
ln 1

δ
2nm

)
≤k

(
1
n

n∑
i=1

sup
c∈C

∥∥∥∥∥1m m∑
j=1

σi,jc(xj)

∥∥∥∥∥
2

+

√
ln 1

δ
2nm

)
.

Consequently, theorem 3.2.2 holds with

εRA ≤
ln 4

δ

3m
+

√
2k(R̂

n
m(F1,x,σ) + εERA) ln

4
δ

m
;

R̃ ≤ k
(
R̂

n
m(F1,x,σ) + εERA

)
+ εRA; &

ṽ ≤ m
m−1kv̂1 +

2 ln 4
δ

m
+

√
2kv̂1 ln

4
δ

m− 1
.
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Type Codec # Parameter Distortion
Vbr c0-c9 0, 1, …, 9 Low-Med
Abr c10-c13 320, 256, 128, 64 Low-Med
Vbr c14-c16 9.9, 9.99, 9.999 Med-High
Abr c17-c19 32, 16, 8 Med-High
Wav c20 — None

Table 3.1: We employ Variable Bit Rate (Vbr) mp3, parameterized by quality, Average Bit Rate (Abr)
mp3, parameterized by bitrate, and uncompressed wav codecs.

Here we see that, for linear loss family L2, we can bound the wimpy variance by computing the
maximum variance along any unit vector (much like in PCA or SVD). Similarly, bounding the ERA is
straightforward as well, as each trial of the n-MCERA essentially corresponds to measuring the maximum
(over codecs) distance traveled (`2 norm) in attribute space over a random walk (directions dictated by
each σi,j). Note that together, corollary 3.2.4 & theorem 3.2.2 imply that for 1-Lipschitz welfare M(·),
r ∈Θ(1), with pr. ≥ 1− δ, we have M(ĉM,L,D)−M(c∗M,L,D) ≤

4kR̂
n
m(F1,x,σ)+Θ

(
ln1

δ

m
+

√
k(v1+Rm(F1,D))ln1

δ

m

)
. (3.2.10)

3.3 Experimental Evaluation of Ewoks
We study various notions of multivariate optimality on four datasets, spanning speech and several music
genres. The Debussy dataset consists of the complete orchestral works of Claude Debussy, conducted
by Yan Pascal Tortelier; the Explosions dataset is the 2000–2013 discography of progressive rock band
Explosions in the Sky; the Zeppelin dataset is the complete discography of hard rock band Led Zeppelin;
and the LibriVox dataset contains public-domain LibriVox audiobooks, all cut into short nonoverlapping
audio samples. In some experiments, we pool all music datasets or all four datasets to evaluate Ewoks
on heterogeneous data. Table 3.1 describes the codecs c0, c1, . . . , c20 used in all experiments.

We quantify distortion in the audio domain with the Perceptual Evaluation of Audio Quality
(PEAQ) [Thiede et al., 2000] metric, which is an objective measure of how well one audio sample
approximates another, based on psychoacoustic principles, that aims to measure the degree of human-
perceived difference. In all experiments, we consider two attributes, the first being PEAQ distortion,
normalized to [0, 1], and the second being the compression ratio, also in [0, 1].

3.3.1 Data-Dependence and Pareto Optimality

A codec set c ∈
(C
k

)
is said to be Pareto-optimal among

(C
k

)
if there exists a linear loss function (nonnegative

linear combination of attributes; see equation 3.2.9) ` ∈ L2 for which the risk (equation 3.2.1) of c is
minimal among

(C
k

)
, i.e.,

Pareto
((C

k

)
,D
) .
=

⋃
`∈L2

argmin
c∈(C

k
)

R(c; `,D) . (3.3.1)

For k = 1, the Pareto-optimal frontier of C in Rd
0+ is then the lower convex-hull LCH(·) of the set of

mean attribute values of all Pareto-optimal codecs, i.e.,

PFrnt(C,D) .
= LCH

{
E

x∼D
[c(x)]

∣∣ c ∈ C} . (3.3.2)

This notion is easily visualized (see figure 3.1), and it concisely represents the set of mean attribute values
(and thus risk values) of c∗` ∈ CH(C) for any ` ∈ L2.

To generalize the Pareto-optimal frontier to k > 1, first observe that the mean attribute values of a k
codec set depend on ` ∈ L2, as Ewoks takes a minimum over k codecs. Consequently, each c ∈

(C
k

)
is
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Figure 3.1: Pareto-optimal frontiers for all datasets. Mean distortion (x axis) and compression ratio (y
axis) shown for each codec •, with Pareto-optimal frontiers for codec families of sizes k ∈ {1, 2, |C|}, color-
coded by dataset. Curves for each k are unambiguous, since k increases from top-right to bottom-left.
Mean-attribute sets for Pareto-optimal k = 2 pairs are shown in the inset as dotted curves.
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Table 3.2: Experiments optimizing `1/2 loss, and M1(·), M∞(·), and M2(·) welfares on au. a) Objective
values, and b) regret for each row-objective, when optimizing ĉC for each column-objective oC .

a) Objective Values:
k `1/2 M1 M∞ M2

1 .297 .297 .341 .309
2 .294 .217 .328 .234
3 .293 .208 .327 .229
|C| .293 .202 .326 .223

b) k = 3 Regret Matrix:
`1/2 M1 M∞ M2

`1/2 0 .0098 .0097 .0015
M1 .1343 0 .1221 .0189
M∞ .0811 .0374 0 .0103
M2 .0607 .0035 .0454 0

assoociated with a mean-attribute set, and we take the Pareto-optimal frontier of
(C
k

)
to be the lower

convex hull of the union of the mean-attribute sets of each c ∈
(C
k

)
. Algebraically, PFrnt(

(C
k

)
,D) is the

LCH of ⋃
c∈(Ck)

{
E

x∼D

[
argmin
c(x)∈c(x)

`(c(x))

] ∣∣∣∣∣ ` ∈ L2
}

. (3.3.3)

Observe that equation 3.3.3 generalizes equation 3.3.2, as for k = 1 and C = {c}, we have argminc(x)∈c(x) `(c(x)) =
c(x). Note that the subadditive nonlinearity of the argmin (i.e., the improvement from selecting the best
among k codecs) improves PFrnt(

(C
k

)
,D) monotonically in k. Again the Pareto-optimal frontier concisely

visualizes the possible mean attribute values (and thus risks) of the optimal c ∈
(C
k

)
for any ` ∈ L2.

Note that, like the welfare concepts of section 3.2.1, Pareto-optimality is a notion of multivariate
optimality. As with welfare, we may define the empirical Pareto-optimal set and the empirical Pareto-
optimal front, w.r.t. sample x, by replacing ED[·] with Êx[·]. Furthermore, by its inherently linear nature,
it is trivial to adapt the uniform convergence guarantees of theorem 3.2.3 to bound the gap between
empirical and true Pareto-optimaltity concepts.

In figure 3.1, we plot the empirical mean PEAQ distortion and compression ratios of codecs, and
empirical Pareto-optimal frontiers of codec sets of sizes k ∈ {1, 2, |C|} on the music, speech, and mixed
datasets. Immediately we see that the Pareto-optimal frontiers differ between datasets, illustrating the
importance of data-dependent codec selection. We see that on the speech and music datasets, the k = 1
(top-right most) Pareto-optimal frontier usually performs similarly to the k = |C|, which indicates little
variability in codec performance over these distributions, thus a static codec for each objective performs
reasonably well. However, for the mixed dataset, we see a massive improvement in moving from k = 1
to k = 2 codecs, and modest diminishing returns for k > 2. This makes sense, as for fixed objectives,
different codecs are often optimal for the LibriVox and music datasets, thus combining them is optimal
in the mixed dataset.

3.3.2 Fairness and Welfare-Optimality

The above Pareto-optimality experiments indicate that for any fixed objective, there exists a small
codec set that is near-optimal (i.e., PFrnt(

(C
2

)
,D) ≈ PFrnt(

( C
|C|
)
,D)) However, we see in the inset that

individual pairs of codecs (dotted lines) only achieve Pareto-optimality for small ranges of L, thus k > 2
codecs may be required to well-optimize many loss functions simultaneously; consequently, we expect
various welfare concepts to continue improving beyond k = 2. In table 3.2 & figure 3.2, we study the
effect of increasing k on the welfare of various Ewoks-optimal solution concepts, which is sensitive to
performance across all of L.

In this experiment, we consider the 2-dimensional `1-linear loss family L1 = {a 7→ w · a : w1 ∈
[0, 1],w2 = 1 − w1} (see eq 3.2.9), where w1 and w2 represent the penalty-weight a user places on
distortion and compression ratio, respectively. We optimize the neutral single linear objective (see
eq 3.2.9) `1/2(a)

.
= (1/2, 1/2) · a, utilitarian welfare M1(·) on the loss distribution over L1 with density
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Figure 3.2: Empirical risk (y-axis) plotted against linear objective family L1 (x-axis), with distortion
weight w1 = x and compression ratio weight w2 = 1− x, on au, for k ∈ {1, 2, 3}. Empirically-optimal
codec sets ĉo ∈

(C
k

)
for each objective o are also given.

∝ |w1 − 1/2|2 (i.e., the user distribution is biased towards the extremes), as well as egalitarian welfare
M∞(·) over L1 and quadratic welfare M2(·) with uniform density over L1.

Table 3.2a shows the raw empirical objective values of each optimality concept, for k ∈ {1, 2, 3, |C|},
and table 3.2b shows the regret of (row) objective oR on ĉC optimized for each (column) objective oC ,
which is the amount by which objective oR would improve if ĉC were optimized for oR instead of oC .

To better understand the tradeoffs made by Ewoks under various objectives, for each objective o,
figure 3.2 plots the empirical risk (see equation 3.2.4) of each o-optimal k codec selection ĉo w.r.t. each
` ∈ L1 as a function of distortion weight w1. In particular, each plot corresponds to a selection size k,
and each line represents the empirical risk w.r.t. the linear loss function with w1 = x, i.e., from left to
right we interpolate from pure distortion to pure compression ratio losses.

From the objective values matrix in table 3.2, we see that the single-objective `1/2 experiences rapidly
diminishing returns as k increases, improving by only 0.004 from k = 1 to k = |C|, whereas the welfare
objectives gradually improve with increasing k. This is as expected, because a sufficiently diverse set of
codecs must be selected so as to perform reasonably well across all ` ∈ L, rather than for some fixed `.

This experiment also clearly illustrates the fairness impact of objective choice, as we see that
improving utilitarian welfare M1(·) can decrease egalitarian welfare M∞(·), as occurs for k = 2, when
ĉM1 = {c18, c20}, which are the second-lowest bitrate and uncompressed codecs, respectively, resulting in
high regret (0.1343) for M∞(·) (see table 3.2a). This is unsurprising, as it is easy to produce low distortion
or low compression ratio encodings; the difficulty lies in optimizing both simultaneously. The regret
matrix (table 3.2b) also shows fairness tradeoffs; here we see that the quadratic-welfare-optimal ĉM2 is
much better on-average than ĉM∞ (utilitarian regret 0.0189 vs 0.1121), despite worst-case performance
only 0.01 worse than ĉM∞ . This confirms that while optimizing the worst-case M∞(·) is at-odds with
optimizing the average-case M1(·), the quadratic M2(·) is a reasonable compromise.

3.3.3 Uniform Convergence Bounds

We now show that our uniform convergence bounds yield valuable conclusions as to the approximate
optimality of Ewoks solutions, and outperform McDiarmid bounds on real data. In figure 3.3, we
plot Ewoks optimality-gap bounds against sample size m, assuming M(·) is 1-Lipschitz, and using
selection-size k = 3, loss family L1 (see equation 3.2.9), n = 100 Monte-Carlo trials, and tail bounds
with failure probability δ = 0.01. Here all bounds are scaled by

√
m to visualize the deviation of rates

from Θ
√

1/m, which appears flat under
√
m-scaling.

We immediately see that our variance-sensitive bounds (theorem 3.2.2) are significantly sharper
than the McDiarmid bounds, yielding valuable conclusions after only m ≈ 1000 samples. The mixed
convergence rates (see theorem 3.2.2) of these bounds are visible as initial fast-decay (negative slopes),
straightening out as m → ∞ and the asymptotic Θ

√
v/m slow rate is reached. In contrast, the

McDiarmid bounds, and the n-MCERAs themselves, all exhibit slow Θ
√

1/m rates (even slopes). In
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particular, the poor performance of the McDiarmid bounds occurs because they are always dominated by
their concentration term 6

√
ln 1

δ
/2m, visible as a large parallel gap between them and the n-MCERAs.

We see also from their relative order that au is the easiest to learn, and all the most difficult. This
is unsurprising; in music and mixed data, we expect more variability (thus variance), and also more
benefit (overfitting) with k > 1 (thus higher R̃).

3.4 Discussion
We propose a novel media streaming strategy, where a small set of codecs c is selected such that the set
includes a “good” solution for each ` ∈ L over D. We develop the Empirical Welfare-Optimal k codec
Selection (Ewoks) algorithm, which learns a data-dependent set of k codecs c that is welfare-optimal
over L. The selection size k balances between the cost of compressing / storing multiple encodings of
media, and the improvement to user experience and fairness.

Our experiments show the importance of considering both the objective and the data-distribution.
We see that while k codec selection yields modest improvement for single-objectives (section 3.3.1),
particularly for heterogenous (mixed speech / music) data, it greatly improves welfare-objectives over loss
families (section 3.3.2). Our experiments confirm that bias-issues exist in codec selection, and exhibit
several surprising phenomena (e.g., optimizing a single neutral loss function can yield bias issues, learning
a more sophisticated [higher k] model for one welfare-concept can harm other welfare concepts), further
motivating rigorous analysis and provable methods for controlling algorithmic bias.

We rigorously analyze the generalization error of Ewoks (section 3.2.3), applying Rademacher
averages with a novel variance-sensitive bound for welfare-generalization. We handle arbitrary Lipschitz
welfare functions, whereas previous applications gave weaker bounds limited to simple cases, such as
utilitarian welfare in auctions [Hoy et al., 2017]. Since general welfare-concepts depend nonlinearly on
many loss values simultaneously, uniform convergence is an ideal tool to analyze them. Our experiments
(section 3.3.3) also show our bounds significant improvement traditional methods in the small-sample
domain.

Our data-driven codec-selection approach follows trends in machine learning and databases. We
replace fixed codecs with learned codecs, in much the same way that autoML systems replace fixed
models with learned pipelines [Hutter et al., 2011], and database systems replace static indices with
learned indices [Kraska et al., 2018]. As this trend continues, and more critical services integrate learned
components, the importance of fairness continues to grow; we are confident that our welfare analysis
methods for provable fairness can be applied beyond the domain of codec selection.
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Chapter 4

Conclusion
Chapter 1 introduces new statistical techniques for variance-insensitive uniform convergence bounds. The
centralization strategy achieves asymptotically-optimal convergence rates and, our Monte-Carlo estimation
procedure yields sharp bounds with both centralized (theorem 1.3.7) and non-centralized (corollary 1.3.8)
Rademacher averages.

Following the pure statistical methods of chapter 1, in chapter 2, I define malfare parallel to welfare
(definition 2.1.1), and show that subject to several intuitive and basic axioms (section 2.1.1), all welfare
and malfare are power means (definition 2.1.6, see theorem 2.1.8). I then argue that fair ML should
seek to minimize malfare, and characterize learnability as such in the fair PAC-learning framework
(definition 2.3.4). I then combine the uniform convergence guarantees of chapter 1 with the fairness
setting of chapter 2 in chapter 3 the fair codec selection problem. In the full thesis, I will expand upon
the fair-PAC-learnability setting, and better characterize necessary and sufficient conditions for various
flavors of learnability. I will additionally describe practical efficient optimization and data-dependent
sample-complexity bounds for fair generalized linear models, as well as extending the methodology to
other fairness-sensitive areas, such as mechanism design and fair machine learning.

The full thesis will contain many additional applications of concentration of measure and uniform
convergence guarantees in data science, as well as additional fairness applications in generalized linear
models and reinforcement learning. In particular, I shall present results on mean estimation in block
databases with arbitrary dependence structure, and for Monte Carlo Markov Chain processes; in both
case using optimal empirical variance-sensitive bounds to reduce dependence on a priori knowledge, and
achieve asymptotically optimal (Gaussian-type) rates, with finite-sample guarantees. I will also present
results on improved sample-complexity guarantees for estimating frequent itemsets [Pellegrina et al.,
2020] and betweenness centrality.

I have additionally worked in several areas that don’t fit cleanly into this thesis, anomaly detection
[Cousins et al., 2017], automated machine learning [Binnig et al., 2015, 2018], empirical game theory and
mechanism design [Viqueira and Cousins, Viqueira et al., 2020]. Of special note are two somewhat more
theoretical papers in pure machine learning. First [Cousins and Upfal, 2017], I show generalization bounds
for a distance-based classifier, including what is to my knowledge the only known exact (closed form)
expression for the empirical Rademacher average of a nontrivial classification model; the analysis uses the
half-binomial expectation, which also plays a key role in the analysis of centralized Rademacher averages,
particularly in lemma 1.2.1. Second [Cousins and Riondato, 2019], I theoretically unify classification
trees with the entropy impurity criterion and regression trees with the square-error impurity criterion,
as well as an infinite family of parametric conditional-density estimation trees, under the cross-entropy
information criterion, and show all to be instances of the minimax-entropy principle, with consequent
efficient training heuristics.
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Appendix A

Supplementary Material for Chapter 1
A.1 Proofs
Lemma 1.2.1. Suppose m ≥ 4. Then

Ex

[
R̂m(Ĉx(F),x)

]
1 + 2b(m)

≤ Rm(CD(F),D) ≤
Ex

[
R̂m(Ĉx(F),x)

]
1− 2b(m)

.

Proof. We first show the rightmost inequality. Starting from the definition of the RA of the distributional
centralization, and then subtracting and adding Êx[f ], it holds

Rm(CD(F),D) = E
σ,x

sup
f∈F

∣∣∣∣∣∣ 1m
m∑
i=1

σi

((
f(xi)− Ê

x
[f ]
)
+
(
Ê
x
[f ]− E

D
[f ]
))∣∣∣∣∣∣
 .

The subadditivity of the supremum and of the absolute value, and the linearity of the expectation allow
us to split the r.h.s. into two summands and obtain

Rm(CD(F),D) ≤ E
σ,x

sup
f∈F

∣∣∣∣∣∣ 1m
m∑
i=1

σi

(
f(xi)− Ê

x
[f ]
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(
Ê
x
[f ]− E

D
[f ]
)∣∣∣∣∣∣
 .

Both terms on the r.h.s. can be seen as expectations w.r.t. x of the ERAs on x of two sample-dependent
families: the empirical centralization of F , and the family

Kx
.
= {y 7→ Ê

x
[f ]− E

D
[f ], f ∈ F} .

Each function in Kx is constant. Thus, we can write

Rm(CD(F),D) ≤ E
x

[
R̂m(Ĉx(F),x)

]
+ E

x

[
R̂m(Kx,x)

]
. (A.1.1)

Using equation 1.2.1 and the linearity of expectation we have that, for each x ∈ Xm, it holds

R̂m(Kx,x) = sup
f∈F
|Ê
x
[f ]− E

D
[f ]|b(m) = SD(F ,x)b(m) = SD(CD(F),x)b(m), (A.1.2)

where in the last step we use the fact that the SD is invariant to shifting of functions. Continuing
from equation A.1.1 and using equation A.1.2 and the rightmost inequality of equation 1.1.4, we obtain

Rm(CD(F),D) ≤ E
x

[
R̂m(Ĉx(F),x)

]
+ 2Rm(CD(F),D)b(m) .

The hypothesis m ≥ 4 implies 1− 2b(m) > 0 (see equation 1.2.1), so we can rewrite the above as

Rm(CD(F),D) ≤
1

1− 2b(m)
E
x

[
R̂m(Ĉx(F),x)

]
,

which completes the proof of the upper bound.
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We next show the lower bound. Starting from the definition of R̂m(Ĉx(F),x) and subtracting and
adding ED[f ], it holds

E
x

[
R̂m(Ĉx(F),x)

]
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σ,x
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f∈F
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σi

((
f(xi)− E

D
[f ]
)
+
(
E
D
[f ]− Ê

x
[f ]
))∣∣∣∣
 .

The subadditivity of the supremum and of the absolute value, and the linearity of the expectation allow
us to split the r.h.s. into two summands and obtain

E
x
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R̂m(Ĉx(F),x)

]
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sup
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m∑
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σi

(
E
D
[f ]− Ê

x
[f ]
)∣∣∣∣∣∣
 . (A.1.3)

The first term on the r.h.s. is the RA of the distributional centralization of F , i.e., it is Rm(CD(F),D).
The second term is the expectation w.r.t. x of the ERA on x of the family

Zx
.
= {x 7→ E

D
[f ]− Ê

x
[f ], f ∈ F} .

Each function in Zx is constant. Proceeding in exactly the same way as we did for the family Kx in the
proof of the upper bound, we can write

R̂m(Zx,x) = SD(CD(F),x)b(m) . (A.1.4)

Continuing from equation A.1.3 and using equation A.1.4 and the rightmost inequality of equation 1.1.4,
we obtain

E
x

[
R̂m(Ĉx(F),x)

]
≤ Rm(CD(F),D) + 2Rm(CD(F),D)b(m) ≤ (1 + 2b(m))Rm(CD(F),D),

and our proof is complete.

Definition A.1.1. A function Z ∈ Xm → R is (α,β)-self-bounding with scale γ, for some α > 0, β ≥ 0,
γ ≥ 0 if for each j = 1, . . . ,m, there exists a function Zj ∈ Xm → R such that, for any x ∈ Xm it holds
that

1. Zj(x) does not depend on the j-th component xj of x; and

2. it holds Zj(x) ≤ Z(x) ≤ Zj(x) + γ;

Additionally, the functions Zj, j = 1, . . . ,m, must be such that, for any x ∈ Xm, it holds
m∑
j=1

(
Z(x)−

Zj(x)

)
≤ αZ(x) + β.

Theorem A.1.2. Let Z be a function from Xm to R that is (α, β)-self-bounding with scale γ, for α ≥ 1/3.
Let δ ∈ (0, 1) and let x be a collection of m i.i.d. samples from X . With probability at least 1− δ over
the choice of x, it holds

E
x

[
Z(x)

]
≤ Z(x) + αγ ln

1

δ
+

√(
αγ ln

1

δ

)2

+ 2γ(αZ(x) + β) ln
1

δ
. (A.1.5)

Additionally, when α = 1, we may improve the constants to

E
x

[
Z(x)

]
≤ Z(x) +

2

3
γ ln

1

δ
+

√(
1√
3
γ ln

1

δ

)2

+ 2γ(Z(x) + β) ln
1

δ
. (A.1.6)
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Proof. In both cases, we will assume WLOG γ = 1. The results then hold by linearity, noting that if
Z(·) is α-β self-bounding, with scale γ, then 1

γ
Z(·) is α-β/γ self-bounding, with scale 1; the general case

thus follows by dividing out γ, obtaining a bound, and then multiplying through by γ.
We first show equation A.1.5. Assume scale γ = 1. It is known that for γ = 1, we have for all α ≥ 1

3 ,
as described in [Boucheron et al., 2009, Thm. 1], which improves the earlier bounds of [Maurer, 2006]

P
(
Z(x) ≤ E

x
[Z(x)]− ε

)
≤ exp

(
−ε2

2(αEx[Z(x)] + β)

)
. (A.1.7)

Now, taking δ equal to the RHS of equation A.1.7, and solving for ε, this implies that with probability
at least 1− δ, we have

Z(x) +
β

α
≥ E

x

[
Z(x)

]
+

β

α
−
√

2(αE
x

[
Z(x)

]
+ β) ln

1

δ
.

Note that this is a quadratic inequality in
√
Ex

[
Z(x)

]
+ β

α , solving for which (via the quadratic
formula) yields nondegenerate solution

E
x

[
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δ
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α ln
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δ
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+ 2α(E
x
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+ β) ln
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δ
.

Finally, in the general case, with γ-scaling, we have

E
x

[
Z(x)

]
≤ Z(x) + γα ln

1

δ
+

√(
γα ln

1

δ

)2

+ 2γα(E
x

[
Z(x)

]
+ β) ln

1

δ
.

We now show equation A.1.6 (i.e., assume α = 1). Again assume γ = 1. This result follows via
identical logic to the above, this time using the sub-gamma form (see Boucheron et al. [2013, Ch. 2.1],
section 2.1) of the stronger sub-Poisson 1-β self-bounding function inequality [Boucheron et al., 2000,
Thm. 1].

In particular, here we have that with probability at least 1− δ,

Z(x) ≥ E
x
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+
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−
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,

which by the quadratic formula, yields
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.

The general result then follows via γ-scaling.

Theorem 1.2.2. Suppose m ≥ 1, and let χ
.
= 1 + 2b(m). For any δ ∈ (0, 1), with probability at least

1− δ over the choice of x, it holds that

E
x
[R̂m(Ĉx(F),x)]≤ R̂m(Ĉx(F),x)+

2rχln1
δ
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m
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Proof. This proof proceeds by showing that R̂m(Ĉx(F),x) is a (1, rb(m))-self-bounding function with
scale rχ/m, then applying equation A.1.6 from theorem A.1.2. First note that the result trivially holds
for m = 1, as the empirically centralized ERA will always be 0, thus we assume m ≥ 2 henceforth.

For any x ∈ Xm, let
Y(x)

.
= R̂m(Ĉx(F),x),

and let x\j (resp. σ\j) denote the m− 1-dimensional vector of all but the j-th element of x (resp. σ).
Define

Yj(x)
.
=

m− 1

m
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= E
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[f ]
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 .

We define these functions for convenience of notation. They will be handy when we later introduce the
functions Z and Zj , j = 1, . . . ,m that we want to show to be self-bounding.

We now show that Yj(x) ≤ Y(x) + r/mb(m). Starting from the definition of Yj(x) and adding and
subtracting (f(xj)− Êx\j [f ])/2m to the argument of the supremum, it holds

Yj(x) = E
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supf∈F
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x\j
[f ]
)
− 1

2

(
f(xj)− Ê
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 .

Doubling and halving the sum in the argument of the expectation, and leveraging the subadditivity of
the supremum and of the absolute value, we obtain

Yj(x) ≤ E
σ\j
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.

The two-term sum forming the argument of the outermost expectation is the expectation w.r.t. only σj

(i.e., conditioned on σ\j) of the quantity
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Thus, using the law of total expectation, we can write
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By subtracting and adding Êx[f ] to each term of the sum, and using the subadditivity of the supremum
and of the absolute value, and the linearity of the expectation, we obtain

Yj(x) ≤ E
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The first term on the r.h.s. is Y(x). The second term is the ERA of the sample-dependent family

Wx
.
=

{
y 7→ 1

m
(f(xj)− Ê

x\j
[f ]), f ∈ F

}
.

Each function in Wx is constant. Using equation 1.2.1 and the linearity of expectation, like we did in the
proof of lemma 1.2.1 for the family Kx (see equation A.1.2), it holds

R̂m(Wx,x) =
1

m
sup
f∈F
|f(xj)− Ê

x\j
[f ]|b(m) ≤ r

m
b(m) .

Thus, continuing from equation A.1.8 by incorporating the above fact, it holds

Yj(x) ≤ Y(x) +
r

m
b(m) . (A.1.9)

We now show that Yj(x) ≥ Y(x)− (1 + b(m))r/m. Starting from the definition of Yj and adding and
removing

1

m
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x\j
[f ]
))

to the argument of the supremum, it holds
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x\j
[f ]
)
∣∣∣∣∣∣∣∣∣

 .

Then, from the triangle inequality and the fact that
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x\j
[f ]
)∣∣ ≤ r,

we obtain
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From here, we add and subtract σi Êx[f ] to each term of the sum, and then use the triangle inequality,
the subadditivity of the supremum, and the linearity of expectation, to obtain
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f∈F

1

m

∣∣∣∣∣∣
m∑
i=1

σi

(
Ê
x
[f ]− Ê

x\j
[f ]

)∣∣∣∣∣∣
− r

m
.

The second term on the r.h.s. is again the ERA of a family of constant functions, each of them taking
value at most r/m. Thus using equation 1.2.1, it follows that

Yj(x) ≥ Y(x)− (1 + b(m))
r

m
.

Combining the above and equation A.1.9, we obtain

Y(x)− (1 + b(m))
r

m
≤ Yj(x) ≤ Y(x) +

r

m
b(m) . (A.1.10)
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We now show that
m∑
j=1

(
Y(x)−Yj(x)

)
≤ Y(x) . (A.1.11)

Starting from the definition of the Yj functions, and using the linearity of expectation and the subadditivity
of the supremum

m∑
j=1

Yj(x) =
m∑
j=1

E
σ

sup
f∈F

1

m

∣∣∣∣∣∣
m∑

i=1,i 6=j

σi

(
f(xi)− Ê

x\j
[f ]

)∣∣∣∣∣∣


≥ E
σ

sup
f∈F

1

m

∣∣∣∣∣∣
m∑
j=1

m∑
i=1,i 6=j

σi

(
f(xi)− Ê

x\j
[f ]

)
.

∣∣∣∣∣∣
 .

We rearrange the terms in the double sums, and use the linearity of expectation to obtain

m∑
j=1

Yj(x) ≥ E
σ

sup
f∈F

1

m

∣∣∣∣∣∣(m− 1)

m∑
i=1

σi

(
f(xi)− Ê

x
[f ]

)∣∣∣∣∣∣


≥ (m− 1)E
σ

sup
f∈F

1

m

∣∣∣∣∣∣
m∑
i=1

σi

(
f(xi)− Ê

x
[f ]

)∣∣∣∣∣∣
 ,

which completes our proof of equation A.1.11, as the last expectation is Y(x).
Define now the functions

Z(x)
.
= Y(x) and Zj(x)

.
= Yj(x)−

r

m
b(m) for each j = 1, . . . ,m .

The value of Zj(x) clearly does not dependent on the j-th component of x. Also, from equation A.1.10
it follows that

Zj(x) ≤ Z(x) ≤ Zj(x) + (1 + 2b(m))
r

m
for each j = 1, . . . ,m .

A consequence of equation A.1.11 is finally that

m∑
j=1

(
Z(x)− Zj(x)

)
≤ Z(x) + rb(m) .

Thus Z, i.e., R̂m(Ĉx(F),x), is a (1, rb(m))-self-bounding function with scale (1 + 2b(m))r/m. An
application of equation A.1.6 from theorem A.1.2 completes the proof.

Before proving theorem 1.3.1, we need the following lemma.

Lemma A.1.3. It holds
W(F) ≤ m

m− 1
E
x
[Ŵx(F)] .

Proof. Using Bessel’s correction, we can rewrite the definition of wimpy variance to use the empirical
expectation as

W(F) = sup
f∈F

E
x

 1

m

m∑
i=1

(
f(xi)− E

D
[f ]
)2 = sup

f∈F
E
x

 1

m− 1

m∑
i=1

(
f(xi)− Ê

x
[f ]
)2 .
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An application of Jensen’s inequality gives

W(F) ≤ E
x

[
sup
f∈F

1

m− 1

m∑
i=1

(
f(xi)− Ê

x
[f ]
)2

= m
m−1

Ŵx(F)

]
.

Theorem 1.3.1. Suppose m ≥ 2. Let δ ∈ (0, 1). With probability ≥ 1− δ over the choice of x,

W(F) ≤ m
m−1Ŵx(F) +

r2 ln 1
δ

m− 1
+

√√√√(r2 ln 1
δ

m− 1

)2

+
2r2 m

m−1
Ŵx(F) ln 1

δ

m− 1
. (1.3.2)

Proof. This proof proceeds by showing that Ŵx(F) is a (m/m−1, 0)-self-bounding with scale r2/m, then
applying lemma A.1.3, and finally equation A.1.5 from theorem A.1.2.

Let x\j denote the vector x with the j-th component removed, as we defined it also in the proof for
theorem 1.2.2. Let V̂x[f ] denote the (unbiased) sample variance of f over x, i.e.,

V̂x[f ]
.
=

1

m− 1

m∑
i=1

(
f(xi)− Ê

x
[f ]

)2

.

Define

Z(x)
.
=

m

m− 1
Ŵx(F) = sup

f∈F
V̂x[f ] = sup

f∈F

1

m− 1

m∑
i=1

(
f(xi)− Ê

x
[f ]

)2

and

Zj(x)
.
= sup

f∈F

1

m− 1

m∑
i=1,i 6=j

(
f(xi)− Ê

x\j
[f ]
)2

. (A.1.12)

We first show that

Zj(x) = sup
f∈F

V̂x[f ]−
1

m

(
f(xj)− Ê

x\j
[f ]

)2
 , (A.1.13)

as this form comes in handy many times. Starting from the definition of Zj in equation A.1.12, we add
and subtract 1

m−1(f(xj)− Êx\j [f ])
2 to the argument of the supremum, and then add and subtract Êx[f ]

to the argument of the sum, to obtain:

Zj(x) = sup
f∈F

1

m− 1


 m∑

i=1

(
f(xi)− Ê

x\j
[f ]
)2− (f(xj)− Ê

x\j
[f ]
)2

= sup
f∈F

1

m− 1


 m∑

i=1

((
f(xi)− Ê

x
[f ]
)
+
(
Ê
x
[f ]− Ê

x\j
[f ]
))2− (f(xj)− Ê

x\j
[f ]
)2

By expressing the square in the argument of the sum, separating the three resulting terms in three distinct
sums (associative property of the sum), and noticing that one of these sum is

∑m
i=1(f(xi)− Êx[f ]) = 0,

and another has argument (Êx[f ]− Êx\j [f ])
2 independent from i, we obtain

Zj(x) = sup
f∈F

1

m− 1

[ m∑
i=1

(
f(xi)− Ê

x
[f ]
)2

=(m−1)V̂x[f ]

+m
(
Ê
x
[f ]− Ê

x\j
[f ]
)2 − (f(xj)− Ê

x\j
[f ]
)2]

.
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It holds Êx[f ] =
1
mf(xj) +

m−1
m Êx\j [f ], so we have

Zj(x) = sup
f∈F

1

m− 1

(m− 1)V̂x[f ] +m

(
1

m
f(xj)−

1

m
Ê
x\j

[f ]

)2

−
(
f(xj)− Ê

x\j
[f ]
)2 .

The identity in equation A.1.13 then follows through simple algebraic steps.
We want to show that Z is a (m/m−1, 0)-self-bounding function with scale r2/m (see definition A.1.1).

By definition of Zj in equation A.1.12, the value of Zj(x) does not depend on the j-th component of x,
as required by the first point in definition A.1.1.

We now show that, for any j = 1, . . . ,m, it holds,

Zj(x) ≤ Z(x) ≤ Zj(x) +
r2

m
for any x ∈ Xm, (A.1.14)

as required by the second point in definition A.1.1. The leftmost inequality follows from the definitions
of Z and Zj . To show the rightmost inequality, we start from equation A.1.13, and use the subadditivity
of the supremum to obtain

Zj(x) ≥


(
sup
f∈F

V̂x[f ]

)
=Z(x)

−

(
sup
f∈F

1

m

(
f(xj)− Ê

x\j
[f ]
)2)

 .

The rightmost supremum is always smaller than r2/m because |f(xj)−Êx\j [f ]| ≤ r, thus we have obtained
the rightmost inequality in equation A.1.14.

We now show that, for any x ∈ Xm, it holds
m∑
i=1

(
Z(x)− Zj(x)

)
≤ m

m− 1
Z(x),

as in the last requirement of definition A.1.1. Starting again from equation A.1.13 and using the
subadditivity of the supremum, it holds

m∑
j=1

Zj(x) =
m∑
j=1

sup
f∈F

[
V̂x[f ]−

1

m

(
f(xj)− Ê

x\j
[f ]
)2] ≥ sup

f∈F

m∑
j=1

[
V̂x[f ]−

1

m

(
f(xj)− Ê

x\j
[f ]
)2]

.

By simple algebra we then get

m∑
j=1

Zj(x) ≥ sup
f∈F

mV̂x[f ]−
1

m

m∑
j=1

(
f(xj)− Ê

x\j
[f ]
)2 .

From here, we use the fact that

Ê
x\j

[f ] =
1

m− 1

(
m Ê

x
[f ]− f(xj)

)
,

to get
m∑
j=1

Zj(x) ≥ sup
f∈F

mV̂x[f ]−
1

m

m∑
j=1

(
m

m− 1
f(xj)−

m

m− 1
Ê
x
[f ]

)2
 .
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Now by simplifying some terms on the r.h.s., we obtain

m∑
j=1

Zj(x) ≥ sup
f∈F

mV̂x[f ]−
m

(m− 1)

1

m− 1

m∑
j=1

(
f(xj)− Ê

x
[f ]

)2

=V̂x[f ]

 .

Collecting terms and using the original definition of Z results in

m∑
j=1

Zj(x) ≥
(
m− m

m− 1

)
Z(x) .

Thus,
m∑
j=1

(
Z(x)− Zj(x)

)
≤ mZ(x)−

(
m− m

m− 1

)
Z(x) ≤ m

m− 1
Z(x),

which concludes our proof that Z, is (m/m−1, 0)-self-bounding with scale r2/m.
We now use the above fact to prove the thesis. A consequence of lemma A.1.3 is

P
x

(
Ŵx(F) ≤W(F)− ε

)
≤ P

x

(
Ŵx(F) ≤

m

m− 1
E
x
[Ŵx(F)]− ε

)
.

From here, we use the definition
Z(x) =

m

m− 1
Ŵx(F)

and apply equation A.1.5 from theorem A.1.2 to obtain the thesis.

The constants in this bound are somewhat sub-optimal, as there is a significant gap between
the best-known (sub-Poisson) tails for (1, 0)-self-bounding and the best-known (sub-gamma) tails for
(1 + ε, 0)-self-bounding functions. We hope that future work leads to refined analysis of tail bounds for
(α, 0)-self-bounding functions that decay gracefully as α exceeds 1.

Lemma 1.3.4. For any x ∈ Xm, it holds

R̂m(F ,x) ≥
√

Ŵr
x(F)
2m

and R̂m(Ĉx(F),x) ≥
√

Ŵx(F)
2m

.

Furthermore, it holds

lim
m→∞

√
mRm(F ,D) ≥

√
2
πW

r(F) and lim
m→∞

√
mRm(CD(F),D) ≥

√
2
πW(F) .

Proof. From the subadditivity of the supremum, it holds that

R̂m(F ,x) ≥ sup
f∈F

E
σ

∣∣∣∣∣∣ 1m
m∑
i=1

σif(xi)

∣∣∣∣∣∣
 .

An application of Khintchine’s inequality [Haagerup, 1982] gives

R̂m(F ,x) ≥ sup
f∈F

1√
2

√
‖f(x)‖22

m2
,
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where f(x) denotes the m-dimensional vector of values of f on x. The proof of the leftmost inequality
in the thesis ends by noting that

Ŵr
x(F) =

‖f(x)‖22
m

.

The rightmost inequality is then a corollary, using the identity Ŵr
x(Ĉx(F)) = Ŵx(F).

The asymptotic lower bounds follow by replacing the Khintchine’s inequality step with an application
of the central limit theorem.

Before proving theorem 1.3.7 we need to introduce an important technical result. For any u ∈ R, let
h(u)

.
= (1 + u) ln(1 + u)− u, and let (u)+

.
= max(0, u).

Theorem A.1.4 (Samson’s bound, [Boucheron et al., 2013, Thm. 12.11]). Let Q1, . . . ,Qm be possibly
different probability distributions over a domain Y. Let G ⊆ X → [−1, 1]. Furthermore, assume that for
each g ∈ G and i ∈ {1, . . . ,m}, it holds EQi [g] = 0. Now, for any y ∈ Ym, let

Z(y)
.
= sup

g∈G

m∑
i=1

g(yi) and S2 .
= E

y

sup
g∈F

m∑
i=1

E
y′i∼Qi

[((
g(yi)− g(y′i)

)
+

)2] .

Let y ∈ Ym, with each yi ∼ Qi, independently (but not necessarily identically, since the distributions
may be different). It holds

P
y

(
Z(y) ≤ E

Q1:m

[Z]− ε

)
≤ exp

(
−S2

4
h

(
2ε

S2

))
. (A.1.15)

Theorem 1.3.7. Let σ ∈ (±1)n×m be a matrix of i.i.d. Rademacher r.v.’s. Let δ ∈ (0, 1). With
probability at least 1− δ over the choice of σ, it holds

R̂m(F ,x) ≤ R̂n
m(F ,x,σ) +

2q̂F (x) ln
1
δ

3nm
+

√
4Ŵr

x(F) ln 1
δ

nm
. (1.3.5)

Proof. Without loss of generality, we assume that q̂F (x) = 1. The general case then follows via scaling.
Let

Z(σ)
.
= nmR̂

n
m(F ,x,σ) =

n∑
j=1

sup
f∈F

∣∣∣∣∣∣
m∑
i=1

σj,if(xi)

∣∣∣∣∣∣ .

It holds Eσ[Z] = nmR̂m(F ,x).
We first show that we can apply Samson’s bound (theorem A.1.4) to Z, i.e., to the scaled MC-ERA.

Consider the function family F± introduced in corollary 1.3.5, and consider the n-times Cartesian product
of F± with itself

(F±)
n = F± × · · · × F±

n times

.

We use f = (f1, . . . , fn) to denote an element of (F±)
n. Now, define the family

G .
= {g(σj,i)

.
= σj,ifj(xi),f ∈ (F±)

n} .

The functions in G have domain Y = {−1, 1} and values in [−1, 1]. It holds

Z(σ) = sup
f∈(F±)n

n∑
j=1

m∑
i=1

σj,ifj(xi) = sup
g∈G

∑
(j,i)∈{1,...n}×{1,...,m}

g(σj,i) . (A.1.16)
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Thus Z has the form required by theorem A.1.4.
Let σ′ denote a second n×m i.i.d. Rademacher matrix (like σ), and define

S2 .
= E

σ

 sup
f∈(F±)n

n∑
j=1

m∑
i=1

E
σ′
j,i

[((
σj,ifj(xi)− σ′

j,ifj(xi)
)
+

)2]
= nE

σ

 sup
f∈F±

m∑
i=1

2
((
σ1,if(xi)

)
+

)2 .

It holds
S2 ≤ 2nmŴr

x(F) . (A.1.17)

For each g ∈ G, g(σj,i) and g(σj′,i′) are independent, though not necessarily identically distributed, for
(j, i) 6= (j′, i′), due to the dependence of g(σj,i) on indices (j, i). It also holds, for each g ∈ G, and indices
(j, i), that Eσi,j [g(σi,j)] = 0, simply due to multiplication by symmetric (Rademacher) r.v.’s.

Thus, we can use Samson’s bound (theorem A.1.4) on G, Z, and S2, although it is generally more
convenient to work with F and (F±)

n.
We now show the thesis. Fix ε ∈ (0, 1). It follows from Samson’s bound that

P
σ

(
R̂m(F ,x) ≥ R̂n

m(F ,x,σ) + ε
)
= P

σ

(
E[Z] ≥ Z(σ) + nmε

)
≤ exp

(
−S2

4
h

(
2nmε

S2

))
.

The function
g(x)

.
= xh

(
2nmε

x

)
is monotonically decreasing in its argument. Thus, using equation A.1.17 gives

P
σ

(
R̂m(F ,x) ≥ R̂n

m(F ,x,σ) + ε
)
≤ exp

−nmŴr
x(F)

2
h

(
ε

Ŵr
x(F)

) .

Now, for u > −1/2, define the function

h1(u)
.
= 1 + u−

√
1 + 2u .

Using the fact (see Boucheron et al. [2013, Ch. 2.4]) that

h(u) ≥ 9h1

(
u

3

)
for every u ∈ (−1,+∞),

we obtain

P
σ

(
R̂m(F ,x) ≥ R̂n

m(F ,x,σ) + ε
)
≤ exp

−9

2
nmŴr

x(F)h1

(
ε

Ŵr
x(F)

) .

The result for q̂F (x) = 1 is obtained by imposing that the r.h.s. be at most δ and solving for ε using
standard sub-gamma inequalities. The general case then follows via linear scaling.

This bound is quite comparable to Bousquet’s bound on the SD (see theorem 1.3.2). The variance
factors Ŵr

x(F) and Ŵx(F) are convenient, as they depend only on sample variances, rather than true
variances and expected supremum deviations.

Even if Samson’s inequality introduces additional 2-factors on both the range and variance w.r.t.
theorem 1.3.2, both are divided by MC-trial count n, so for n ≥ 2 trials, the Monte-Carlo error terms
become negligible.
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A.2 Details on the Experimental Evaluation

As mentioned in the main text, lemma 1.4.1 is a consequence of [Shalev-Shwartz and Ben-David, 2014,
Lemmas 26.11, 26.10], reported here for completeness.

Lemma A.2.1 (Shalev-Shwartz and Ben-David, 2014, Lemmas 26.11, 26.10). It holds

R̂m(F1,x) = E
σ


∥∥∥∥∥∥ 1

m

m∑
i=1

σixi

∥∥∥∥∥∥
∞

 ≤ max
i
‖xi‖∞

√
2 ln(2d)

m
,

and

R̂m(F2,x) = E
σ


∥∥∥∥∥∥ 1

m

m∑
i=1

σixi

∥∥∥∥∥∥
2

 ≤ max
i
‖xi‖2

1√
m

.

We now show the centralized variants.

Lemma 1.4.1. Let x̄ .
= 1

m

∑m
i=1 xi ∈ Rd. For the `1 norm, it holds

R̂m(Ĉx(F1),x) = E
σ


∥∥∥∥∥∥ 1

m

m∑
i=1

σi(xi − x̄)

∥∥∥∥∥∥
∞

 ≤ max
i
‖xi − x̄‖∞

√
2 ln(2d)

m
,

while for the `2 norm, it holds

R̂m(Ĉx(F2),x) = E
σ


∥∥∥∥∥∥ 1

m

m∑
i=1

σi(xi − x̄)

∥∥∥∥∥∥
2

 ≤ max
i
‖xi − x̄‖2

1√
m

.

Proof. We show the `2 case in detail; the reasoning for the `1 case is essentially the same (see details at
the end of the proof). The definition of R̂m(Ĉx(F2),x) is

R̂m(Ĉx(F2),x) = E
σ

 sup
w:‖w‖2≤1

∣∣∣∣∣∣ 1m
m∑
i=1

σi

(
w · xi − Ê

x
[w]
)∣∣∣∣∣∣
 ,

where

Ê
x
[w] =

1

m

m∑
i=1

(w · xi) = w · x̄ .

Using linearity we then get

R̂m(Ĉx(F2),x) = E
σ

 sup
w:‖w‖2≤1

∣∣∣∣∣∣w · 1m
m∑
i=1

σi(xi − x̄)

∣∣∣∣∣∣
 .

Now, for ease of notation let v = 1
m

∑m
i=1 σi(xi − x̄). The supremum is realized when

w =
v

‖v‖2
,
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because in this case the vector w has the same direction as w and the largest possible norm ‖w‖2 = 1.
Since the two vectors w and v are proportional to each other, Cauchy-Schwarz inequality holds with
equality and we have

w · v = ‖w‖2‖v‖2 = ‖v‖2 =

∥∥∥∥∥∥ 1

m

m∑
i=1

σi(xi − x̄)

∥∥∥∥∥∥
2

.

We thus obtain

R̂m(Ĉx(F2),x) = E
σ


∥∥∥∥∥∥ 1

m

m∑
i=1

σi(xi − x̄)

∥∥∥∥∥∥
2

 .

From here, we can proceed as in the second part of the proof of [Shalev-Shwartz and Ben-David, 2014,
Lemma 26.10] to obtain the thesis.

By similar reasoning (now with Hölder’s inequality in place of the Cauchy-Schwarz inequality, and
following the proof of Shalev-Shwartz and Ben-David [2014, Lemma 26.11]), we get that

R̂m(Ĉx(F1),x) = E
σ


∥∥∥∥∥∥ 1

m

m∑
i=1

σi(xi − x̄)

∥∥∥∥∥∥
∞

 ≤ max
i
‖xi − x̄‖∞

√
2 ln(2d)

m
.

A.2.1 Data Generation

Our data distributions for both the `1 and `2 constrained linear family experiments are both random-
ized and parameterized by dimension d. Rademacher averages and wimpy variances depend on the
randomization and d, and ranges may be bounded a priori in terms of d.

`1 Datasets In our `1 experiments, each xj is independently Beta-distributed, thus x ∼ B(α1,β1)×
· · · × B(αd,βd). The parameters α and β are themselves randomized, in particular, we sample αj and
βj from

√
χ2
j , where χ2

k is the χ2 distribution with k degrees of freedom. In these datasets, r = q = 1.

`2 Datasets In our `2 experiments, we generate random mean vector µ ∈ Rd and covariance matrix
Σ ∈ Rd×d, then sample x′ ∼ N (µ,Σ), and finally obtain sample x by projecting x′ to the nonnegative
hyperquadrant of the radius

√
d `2 sphere; i.e.,

x = argmin
x∈Rd:‖x‖2≤

√
d∧0�x

‖x− x′‖2 .

Taking Id to be the identity matrix, we sample µ ∼ N (1, Id), and taking a ∼ U(0, 1)d×d, we let
Σ = aa>

d + Id. In these datasets, r = q =
√
d.

A.2.2 Supplementary Plots

Figure A.1 shows the same results as figure 1.1 (in the main text), but without the scaling of the quantities
by
√
m. Similarly, figure A.2 shows the same results as figure 1.2, sans scaling by

√
m. Additionally, both

plots also include a McDiarmid term 3r
√
ln 1

η
/2m, representing the additive error incurred bounding the

SD in terms of R̂1
m(F ,x,σ). We stress that this term does not include the MC-ERA itsef, and thus is just

one summand of the total McDiarmid SD bound. Nevertheless, the McDiarmid term alone asymptotically
exceeds all other bounds in all experiments, except for the (loose) noncentralized analytical bound of
F1 over R256. This further reinforces the importance of variance-sensitive bounds over the (range-only)
McDiarmid bounds.
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F1 over R4 F1 over R256 F2 over R64

Sample size m Sample size m Sample size m

Figure A.1: Comparison of SD bounds as functions of the sample size m. See the main text for an
explanation of the results.

F1 over R4 F1 over R256 F2 over R64

Sample size m Sample size m Sample size m

Figure A.2: Comparison of SD bounds as functions of the sample size m. See the main text for an
explanation of the results.
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