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Google ‘fixed’ its racist algorithm by
removing gorillas from its image-labeling
tech / Nearly three years after the company was

called out, it hasn’t gone beyond a quick
workaround

By Jeffrey Dastin 8 MIN READ

How Wrongful Arrests Based on Al Derailed 3 Men's Lives

Robert Williams, Michael Oliver, and Nijeer Parks were misidentified by facial recognition software. The impact cast a long shadow.
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Unifurm Conergence Unifarm Convserce

Bias can arise from any step in the
machine learning pipeline

® Replicate discrimination in training data
® Data quality, data quantity issues
® Concerns of modeler leak into objective

® Model selection and deployment favor
profit over social equity
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® |isten to marginalized communities

® How do we codify fairness?
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e Statistical learning theory for fairness
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® Loss function £(¢, y)
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® | oss functions are proxies for the impact a model has on real humans

® Domain X Parameter
® Codomain ) |
——
® Parameter space © Feature Space Label Space
X Y
® Loss function £(¢, y)
® Group fairness: Assume protected groups 1,...,g
® Distribution D; over X x Y captures experiences of each group ¢
® Per-group training samples (z;, y;) ~ D"
( '/ ‘ I/ ‘ '/ D,
(1, 91) ~D™ (22, %2) (w3, 93) (24, Yg) ~ Dy’

° Summarlze model hg impact for group 1 as the expected risk or empirical risk

R0 = B [data)n)] o Rio) = L3ttt

(I~U)ND1 (I,’U) w’uyz i=1



Statisis Human-Centric Machine Learning
Eclipse
Fairness ?

® Center those impacted, not the modeler!
® Risk R;(0) is harm to group i by model 0
® Data derived from impacted humans,
not decisions about them



Statisis Human-Centric Machine Learning
Eclipse
Fairness

e Center those impacted, not the modeler! ~ ® Contrast with constraint-based fairness
® Risk R;(0) is harm to group i by model 0 ® Primary objective: Given by modeler
® Data derived from impacted humans, ® Secondary concern: Human-centric
not decisions about them fairness constraints
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e Agent A receives vector-valued reward r(s, a) € RY representing all groups

® QOptimize not the value of what | want, but the welfare of value functions

- Yes! +5
_1.-- & No! -2
+0
: Objective:

argmax W (L — E [th”(staw(st»})
7.- T8 o
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® How should we consolidate per-group risk or utility?
® Studied by moral philosophers and economists
® Cardinal welfare theory generally treats equitable
distribution of utility to individuals
® | axiomatically characterize equitable distribution of
disutility to weighted groups
® Power-mean malfare: Disutility vector £ € R, ,
weights probability vector w € A,

2
(1,2)
1 - -
® p > 1 is convex, incentivizes equitable redistribution — M,((1,2,3); 3)
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® How should we consolidate per-group risk or utility?
® Studied by moral philosophers and economists
® Cardinal welfare theory generally treats equitable
distribution of utility to individuals
® | axiomatically characterize equitable distribution of
disutility to weighted groups
® Power-mean malfare: Disutility vector £ € R, ,
weights probability vector w € A,

3
2
(1,2)
1 - -
® p > 1 is convex, incentivizes equitable redistribution — M,((1,2,3); 3)
...... 1
® Welfare and malfare encode social values ‘ ‘ M“‘J((l’zv?’) 3)
5 10 15 20 25

® Optimizing is intersubjectively fair for shared values
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Univariate Linear Regression

Empirical Risk Minimization T
A ) 10 A ]?/1 (9)
0 = argminR;(0) |\ = v R (0)
e M (R(9); 3
81 — M (R(0);}) |
Empirical Malfare Minimization
0 = argmin M\ (z — RZ(Q)) or |
USC)
4 - -
e EMM generalizes ERM
® Convex optimization —® T .
® Intuitive hyperparameter M(-) 2 ... """ &onntt 8
| | |
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Univariate Linear Regression

Empirical Risk Minimization T
A 10 A R’l (9)
0 =argminR;(0) |\ v R2(6)
veo Mi(R(0); )
. . o — M (R(0):3) |
Empirical Malfare Minimization
6 — . . 5 6| a
= argmin M (7 — R;(6)
0cO
4 - -
e EMM generalizes ERM
® Convex optimization —®... .
® Intuitive hyperparameter M(-) 2 .. """ &onntt 8
® |nteresting special cases el PR
® p = oo is minimax fair learning 0 | | |
® p=1is w-weighted risk minimization —2 —1 0 1 2



Wiher Fair Logistic Regression on the Adult Dataset

Statistics
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Fairmess Per-Group Weighted LR Risk versus Malfare Function
Cyrus Cousins 5
-+ Training EEl Black 9.59% 12.1% HEl Am-Ind-Esk 0.96% 11.7%
- Test White 85.50% 25.4% BN Other 0.83% 12.3%
4 Asian-Pac-Is 3.11% 26.9% Il Malfare
M ~~~~~~~~~~
D e oo T
I~ ..................._ ~~~‘-~____.
5 ""-.,:.—.". ———————————————————
3 37 =T T
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Malfare Power p
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® Rademacher averages bound risk generalization gap
® Suppose range r loss function, parameter space ©
® Supremum Deviation Bound: With probability at least 1 — §:

For all 6 € ©: )Ri(é)) - R,,;(H)’ <ej =Wy ((00,Dy) + 1
® (Can overfit more to smaller groups
- Ri(e) +e, €@
—Ri(0)

1
In 3
Qmi

1
Vmi

< Risk (Bound) —

+—0cB — p

® | generalize this result to power-mean malfare

Forall 0 € ©: |M, (i Ri(6); w) — M, <z — Rq(0); w)‘ < max €
i€1,...,9
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® Can we learn a Probably Approximately Correct (malfare-optimal) model?
® Sample complexity m y (£,0) is the minimum sufficient sample size such that:

® For any problem instance (distributions D;.4)
¢ With probability at least 1 —§
® | earn model 0 that is e-approximately optimal

P (AAP <z — Ri(0); w) < agglen;n M, (i~ Ri(07); w) + 5> >1-9

® Power-mean malfare is a contraction function (1-Lipschitz)
o0

\mp (i Rs(0); w) — M, (i — Ry(0); w)’ <||i > Ri(0) — Ra(0)

® Comparable sample complexity (per-group) to PAC learning: mp(g,0) < mg (5, %)
° 5—% SD bound for all groups suffices for EMM to fair-PAC learn ©
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® Implicitly spet grotips,of various sizes.and risk levels

( average), power-means
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® Encode societal values as malfe n"ctyiqns . ¥
® Implicitly spec s betwveen-grotips; of various sizes.and risk levels

, POWEr-means

e Collect human ing impacted
for

® Garbage in, g

® To have az/o'ice, @& “ ‘
® Risk represents eac ‘gr“\;%up;“

{
\

3 » ":|

® Statistical learning theory. _—

e OQverfitting to fairness: Disprb‘dortion‘t‘g Ela to minority groups

® Rademacher averages yield gt}él‘%ﬁéliz!fpb bounds
'T‘V




