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Fairness, Discrimination, and Machine Learning

Bias can arise from any step in the
machine learning pipeline

• Replicate discrimination in training data
• Data quality, data quantity issues
• Concerns of modeler leak into objective
• Model selection and deployment favor

profit over social equity
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Setting the Boundaries

In This Talk
• Assume human impact of model is

understood (through the loss function)
• Work with economists, sociologists
• Listen to marginalized communities

• How do we codify fairness?
• Compromise between protected groups
• Race, gender, etc.

• Statistical learning theory for fairness
• Overfitting to fairness

Professional TheoristProfessional Theorist
AmateurHumanistAmateurHumanist
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Loss, Data, Machine Learning, and Humanity
• Loss functions are proxies for the impact a model has on real humans

• Domain X
• Codomain Y
• Parameter space Θ

• Loss function `(ŷ, y)

Parameter
Space
Θ

Feature Space
X

Label Space
Yhθ(x) = ŷ

`(ŷ, y)

• Group fairness: Assume protected groups 1, . . . , g
• Distribution Di over X × Y captures experiences of each group i
• Per-group training samples (xi ,yi) ∼ Dmi

i

D1D1

(x1,y1) ∼ Dm1
1

D2D2

(x2,y2) ∼ Dm2
2

D3D3

(x3,y3) ∼ Dm3
3

· · ·
DgDg

(xg,yg) ∼ D
mg
g

• Summarize model hθ impact for group i as the expected risk or empirical risk

Ri(θ) = E
(x,y)∼Di

[
`(hθ(x), y)

]
, R̂i(θ) = Ê

(x,y)∈(xi ,yi)

 1

mi

mi∑
i=1

`(hθ(x), y)


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Human-Centric Machine Learning

• Center those impacted, not the modeler!
• Risk Ri(θ) is harm to group i by model θ
• Data derived from impacted humans,

not decisions about them

• Contrast with constraint-based fairness
• Primary objective: Given by modeler
• Secondary concern: Human-centric

fairness constraints
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Vignette: Group-Fair Reinforcement Learning

• Agent A receives vector-valued reward r(s, a) ∈ Rg representing all groups

• Optimize not the value of what I want, but the welfare of value functions

A

N

E

S

W

User Yes! +5
User No! −2
User Maybe! +0

Objective:

argmax
π

W

(
i 7→ E

π,s

[ ∞∑
t=0

γtri(st , π(st))

])
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Welfare-Centric Fair Machine Learning

• How should we consolidate per-group risk or utility?
• Studied by moral philosophers and economists
• Cardinal welfare theory generally treats equitable

distribution of utility to individuals

• I axiomatically characterize equitable distribution of
disutility to weighted groups
• Power-mean malfare: Disutility vector ` ∈ Rg

0+,
weights probability vector w ∈ 4g

W

p (`;w) = p

√√√√ g∑
i=1

wi`
p
i

lim
p→∞

W

p (`;w) = max
i∈1,...,g

`i

• p ≥ 1 is convex, incentivizes equitable redistribution
• Welfare and malfare encode social values
• Optimizing is intersubjectively fair for shared values 5 10 15 20 25

0

1

2

3

(1, 2)

p

Mp(〈1, 2, 3〉; 13)
M∞(〈1, 2, 3〉; 13)
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A Generic Fair Machine Learning Algorithm

Empirical Risk Minimization

θ̂ = argmin
θ∈Θ

R̂i(θ)

Empirical Malfare Minimization

θ̂ = argmin
θ∈Θ

W(i 7→ R̂i(θ)
)

• EMM generalizes ERM
• Convex optimization
• Intuitive hyperparameter W

(·)
• Interesting special cases
• p =∞ is minimax fair learning
• p = 1 is w-weighted risk minimization

−2 −1 0 1 2
0

2

4

6

8

10

θ

Univariate Linear Regression

R̂1(θ)

R̂2(θ)
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Fair Logistic Regression on the Adult Dataset

· · · Training
- - - Test
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Overfitting to Fairness
• Rademacher averages bound risk generalization gap
• Suppose range r loss function, parameter space Θ
• Supremum Deviation Bound: With probability at least 1− δ:

For all θ ∈ Θ:
∣∣∣Ri(θ)− R̂i(θ)

∣∣∣ ≤ εi = 2Rmi (` ◦Θ,Di) + r

√
ln 1

δ

2mi• Can overfit more to smaller groups

←− θ ∈ Θ −→

←
Ri

sk
(B

ou
nd

)
→ R̂i(θ)

• I generalize this result to power-mean malfare

For all θ ∈ Θ:
∣∣∣∣ W

p
(
i 7→ Ri(θ);w

)
− W

p

(
i 7→ R̂i(θ);w

)∣∣∣∣ ≤ max
i∈1,...,g

εi
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Fair-PAC Learning

• Can we learn a Probably Approximately Correct (malfare-optimal) model?
• Sample complexity m W(ε, δ) is the minimum sufficient sample size such that:

• For any problem instance (distributions D1:g)
• With probability at least 1− δ
• Learn model θ̂ that is ε-approximately optimal

P

(
W

p

(
i 7→ Ri(θ̂);w

)
≤ argmin

θ∗∈Θ
W

p
(
i 7→ Ri(θ

∗);w
)
+ ε

)
≥ 1− δ

• Power-mean malfare is a contraction function (1-Lipschitz)∣∣∣ W

p
(
i 7→ R̂i(θ);w

)
− W

p
(
i 7→ Ri(θ);w

)∣∣∣ ≤∥∥i 7→ R̂i(θ)− Ri(θ)
∥∥
∞

• Comparable sample complexity (per-group) to PAC learning: m W(ε, δ) ≤ mR

(
ε, δ

g

)
• ε- δg SD bound for all groups suffices for EMM to fair-PAC learn Θ
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Fair Learning Overview

• Encode societal values as malfare functionsEncode societal values as malfare functions
• Implicitly specify tradeoffs between groups of various sizes and risk levelsImplicitly specify tradeoffs between groups of various sizes and risk levels
• Egalitarian (worst-case), utilitarian (weighted average), power-meansEgalitarian (worst-case), utilitarian (weighted average), power-means

• Collect human-centric data regarding impacted groupsCollect human-centric data regarding impacted groups
• Garbage in, garbage out: Fair decisions need fair dataGarbage in, garbage out: Fair decisions need fair data
• To have a voice, groups must speak for themselvesTo have a voice, groups must speak for themselves
• Risk represents each group’s dissatisfactionRisk represents each group’s dissatisfaction

• Statistical learning theoryStatistical learning theory
• Overfitting to fairness: Disproportionate harm to minority groupsOverfitting to fairness: Disproportionate harm to minority groups
• Rademacher averages yield generalization boundsRademacher averages yield generalization bounds
• Fair-PAC learningFair-PAC learning
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